Suppr超能文献

低能见度环境下飞行员工作负荷的机器学习评估模型

Machine learning evaluation model of pilot workload in a low-visibility environment.

作者信息

Wang Yuansheng, Guo Xinyao, Guo Shaoshuai, Jiang Fang, Liang Zhuping, Peng Le, Chai Yi

机构信息

School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.

Henan International Joint Laboratory of Man Machine Environment and Emergency Management, Anyang Institute of Technology, Anyang, 455099, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):20518. doi: 10.1038/s41598-025-05759-7.

Abstract

To analyze the variation trend of pilots' workload in a low-visibility flight environment and then put forward a scientific evaluation method, this study set up an experimental platform using an E01-pro simulated flight platform and a PhysioPlux multipurpose physiological index tester. The ECG signal data of 40 pilots in normal- and low-visibility flight environments were monitored and collected. Meanwhile, the workload and heart rate (HR) changes of pilots under different visibility levels were analyzed in accordance with the American NASA-TLX workload scale, and the sensitive indexes significantly affecting pilots' workload among ECG signal indexes were screened and extracted. A quantitative evaluation method for pilots' workload was established on the basis of the hidden Markov model (HMM) in machine learning theory, sensitive ECG signal indexes, and subjective scale data. In addition, the workload state of pilots under different visibility levels was judged, and the evolution laws of ECG indexes were revealed. Results show that multiple indexes such as pilots' average HR and scale scores grow significantly under the low-visibility flight environment. The four indexes-pNN20, HF/LF, SD2/SD1, and HR-in ECG signals exhibit significant differences in distinguishing different levels of workload. The accuracy of the HMM-based pilots' workload evaluation model can reach as high as 87.5%. The conclusions provide methodological support for the fast evaluation of pilots' workload state.

摘要

为分析低能见度飞行环境下飞行员工作负荷的变化趋势并提出科学的评估方法,本研究利用E01-pro模拟飞行平台和PhysioPlux多用途生理指标测试仪搭建了实验平台。监测并采集了40名飞行员在正常和低能见度飞行环境下的心电图信号数据。同时,依据美国国家航空航天局(NASA)的TLX工作负荷量表分析了不同能见度水平下飞行员的工作负荷及心率(HR)变化,筛选并提取了心电图信号指标中对飞行员工作负荷有显著影响的敏感指标。基于机器学习理论中的隐马尔可夫模型(HMM)、敏感心电图信号指标和主观量表数据,建立了飞行员工作负荷的定量评估方法。此外,判断了不同能见度水平下飞行员的工作负荷状态,揭示了心电图指标的演变规律。结果表明,在低能见度飞行环境下,飞行员的平均心率和量表得分等多个指标显著增长。心电图信号中的pNN20、HF/LF、SD2/SD1和HR这四个指标在区分不同工作负荷水平时存在显著差异。基于HMM的飞行员工作负荷评估模型的准确率高达87.5%。研究结论为快速评估飞行员工作负荷状态提供了方法支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验