Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
Department of Petroleum Engineering, Khalifa University, Abu Dhabi, UAE.
Sci Rep. 2023 Jun 17;13(1):9855. doi: 10.1038/s41598-023-36096-2.
This study employs a stacked ensemble machine learning approach to predict carbonate rocks' porosity and absolute permeability with various pore-throat distributions and heterogeneity. Our dataset consists of 2D slices from 3D micro-CT images of four carbonate core samples. The stacking ensemble learning approach integrates predictions from several machine learning-based models into a single meta-learner model to accelerate the prediction and improve the model's generalizability. We used the randomized search algorithm to attain optimal hyperparameters for each model by scanning over a vast hyperparameter space. To extract features from the 2D image slices, we applied the watershed-scikit-image technique. We showed that the stacked model algorithm effectively predicts the rock's porosity and absolute permeability.
本研究采用堆叠集成机器学习方法,预测具有不同孔隙喉道分布和非均质性的碳酸盐岩的孔隙度和绝对渗透率。我们的数据集由四个碳酸盐岩岩心样本的 3D 微 CT 图像的 2D 切片组成。堆叠集成学习方法将来自几个基于机器学习的模型的预测集成到单个元学习器模型中,以加速预测并提高模型的泛化能力。我们使用随机搜索算法通过扫描超参数空间来获得每个模型的最优超参数。为了从 2D 图像切片中提取特征,我们应用了分水岭 - skikit-image 技术。我们表明,堆叠模型算法可以有效地预测岩石的孔隙度和绝对渗透率。