Suppr超能文献

用于胃肠疾病检测的可解释深度学习架构:一种结合主成分分析和可解释人工智能的三阶段方法。

Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI.

作者信息

Ahamed Md Faysal, Shafi Fariya Bintay, Nahiduzzaman Md, Ayari Mohamed Arselene, Khandakar Amith

机构信息

Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh.

Department of Civil and Environmental Engineering, Qatar University, Doha, 2713, Qatar.

出版信息

Comput Biol Med. 2025 Feb;185:109503. doi: 10.1016/j.compbiomed.2024.109503. Epub 2024 Dec 7.

Abstract

GI abnormalities significantly increase mortality rates and impose considerable strain on healthcare systems, underscoring the essential requirement for rapid detection, precise diagnosis, and efficient strategic treatment. To develop a CAD system, this study aims to automatically classify GI disorders utilizing various deep learning methodologies. The proposed system features a three-stage lightweight architecture, consisting of a feature extractor using PSE-CNN, a feature selector employing PCA, and a classifier based on DELM. The framework, designed with only 24 layers and 1.25 million parameters, is employed on the largest dataset, GastroVision, containing 8000 images of 27 GI disorders. To improve visual clarity, a sequential preprocessing strategy is implemented. The model's robustness is evaluated through 5-fold cross-validation. Additionally, several XAI methods, namely Grad-CAM, heatmaps, saliency maps, SHAP, and activation feature maps, are used to explore the model's interpretability. Statistical significance is ensured by calculating the p-value, demonstrating the framework's reliability. The proposed model PSE-CNN-PCA-DELM has achieved outstanding results in the first stage, categorizing the diseases' positions into three primary classes, with average accuracy (97.24 %), precision (97.33 ± 0.01 %), recall (97.24 ± 0.01 %), F1-score (97.33 ± 0.01 %), ROC-AUC (99.38 %), and AUC-PR (98.94 %). In the second stage, the dataset is further divided into nine separate classes, considering the overall disease characteristics, and achieves excellent outcomes with average performance rates of 90.00 %, 89.71 ± 0.11 %, 89.59 ± 0.14 %, 89.51 ± 0.12 %, 98.49 %, and 94.63 %, respectively. The third stage involves a more detailed classification into twenty-seven classes, maintaining strong performance with scores of 93.00 %, 82.69 ± 0.37 %, 83.00 ± 0.38 %, 81.54 ± 0.35 %, 97.38 %, and 88.03 %, respectively. The framework's compact size of 14.88 megabytes and average testing time of 59.17 milliseconds make it highly efficient. Its effectiveness is further validated through comparisons with several TL approaches. Practically, the framework is extremely resilient for clinical implementation.

摘要

胃肠道异常会显著提高死亡率,并给医疗系统带来巨大压力,这凸显了快速检测、精确诊断和有效战略治疗的迫切需求。为了开发一个计算机辅助诊断(CAD)系统,本研究旨在利用各种深度学习方法对胃肠道疾病进行自动分类。所提出的系统具有一个三阶段的轻量级架构,包括一个使用PSE-CNN的特征提取器、一个采用主成分分析(PCA)的特征选择器和一个基于深度极端学习机(DELM)的分类器。该框架仅设计了24层和125万个参数,应用于最大的数据集GastroVision,其中包含27种胃肠道疾病的8000张图像。为了提高视觉清晰度,实施了一种顺序预处理策略。通过5折交叉验证评估模型的稳健性。此外,还使用了几种可解释人工智能(XAI)方法,即梯度加权类激活映射(Grad-CAM)、热图、显著性图、SHAP值和激活特征图,来探索模型的可解释性。通过计算p值确保统计显著性,证明了该框架的可靠性。所提出的模型PSE-CNN-PCA-DELM在第一阶段取得了出色的结果,将疾病位置分为三个主要类别,平均准确率为97.24%,精确率为97.33±0.01%,召回率为97.24±0.01%,F1分数为97.33±0.01%,ROC曲线下面积(ROC-AUC)为99.38%,精确率-召回率曲线下面积(AUC-PR)为98.94%。在第二阶段,考虑到整体疾病特征,数据集进一步分为九个单独的类别,并取得了优异的结果,平均性能率分别为90.00%、89.71±0.11%、89.59±0.14%、89.51±0.12%、98.49%和94.63%。第三阶段涉及更详细地分为二十七个类别,保持了较强的性能,分数分别为93.00%、82.69±0.37%、83.00±0.38%、81.54±0.35%、97.38%和88.03%。该框架紧凑的14.88兆字节大小和平均59.17毫秒的测试时间使其效率极高。通过与几种迁移学习(TL)方法的比较,进一步验证了其有效性。实际上,该框架在临床应用中具有极强的适应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验