文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于脑MRI图像的星形细胞瘤分级的随机微分方程建模方法

Stochastic differential equation modeling approach for grading astrocytomas on brain MRI images.

作者信息

Raisi-Nafchi Mahsa, Tajmirriahi Mahnoosh, Rabbani Hossein, Amini Zahra

机构信息

Bioimaging and Biomedical Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, 81746734641, Iran.

Bioelectrics and Biomedical Engineering Department, Medical Image and Signal Processing Research Centre, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, 81746734641, Iran.

出版信息

Sci Rep. 2025 Jul 2;15(1):22835. doi: 10.1038/s41598-025-06144-0.


DOI:10.1038/s41598-025-06144-0
PMID:40596507
Abstract

Astrocytomas are among the most prevalent primary brain tumors and are classified into four grades by the World Health Organization. Accurate grading is essential for guiding treatment, as therapeutic strategies depend heavily on tumor grade. This paper presents a new preoperative classification method for astrocytomas, addressing the issue of data scarcity in medical imaging. This work leverages an advanced statistical modeling approach based on stochastic differential equations to analyze post-contrast T1-weighted brain MRI images that require minimal data and offer rapid processing times. In this method, the alpha-stable nature of MRI images is represented by applying a fractional Laplacian filter, and the parameters of the resulting alpha-stable distribution are fed to classifiers to detect the grade of astrocytomas. The method is implemented in both 1D and 2D processing modes, with customized preprocessing for each. Three classification algorithms were evaluated: support vector machine, K-nearest neighbor, and random forest. In the three-class classification task (Grades II-IV), the support vector machine exhibited superior performance, achieving accuracy, sensitivity, and specificity of 98.49%, 98.42%, and 99.23% in 2D mode, and 93.52%, 93.23%, and 96.72% in 1D mode. The results indicate that the proposed framework has the potential to significantly enhance preoperative grading of astrocytomas.

摘要

星形细胞瘤是最常见的原发性脑肿瘤之一,世界卫生组织将其分为四个等级。准确分级对于指导治疗至关重要,因为治疗策略在很大程度上取决于肿瘤等级。本文提出了一种新的星形细胞瘤术前分类方法,以解决医学影像中数据稀缺的问题。这项工作利用基于随机微分方程的先进统计建模方法,来分析对比增强后的T1加权脑MRI图像,该方法所需数据最少且处理速度快。在这种方法中,通过应用分数拉普拉斯滤波器来表示MRI图像的α稳定特性,并将所得α稳定分布的参数输入分类器以检测星形细胞瘤的等级。该方法以一维和二维处理模式实现,每种模式都有定制的预处理。评估了三种分类算法:支持向量机、K近邻和随机森林。在三类分类任务(II-IV级)中,支持向量机表现出卓越的性能,在二维模式下准确率、灵敏度和特异性分别达到98.49%、98.42%和99.23%,在一维模式下分别为93.52%、93.23%和96.72%。结果表明,所提出的框架有可能显著提高星形细胞瘤的术前分级。

相似文献

[1]
Stochastic differential equation modeling approach for grading astrocytomas on brain MRI images.

Sci Rep. 2025-7-2

[2]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[3]
Presence of Fragmented Intratumoral Thrombosed Microvasculature in the Necrotic and Peri-Necrotic Regions on SWI Differentiates IDH Wild-Type Glioblastoma From IDH Mutant Grade 4 Astrocytoma.

J Magn Reson Imaging. 2025-7

[4]
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.

Acad Radiol. 2025-2

[5]
Magnetic Resonance Imaging Radiomics-Driven Artificial Neural Network Model for Advanced Glioma Grading Assessment.

Medicina (Kaunas). 2025-6-3

[6]
Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Sci Rep. 2025-7-1

[7]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[8]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[9]
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.

J Magn Reson Imaging. 2025-6

[10]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

本文引用的文献

[1]
Biologically interpretable multi-task deep learning pipeline predicts molecular alterations, grade, and prognosis in glioma patients.

NPJ Precis Oncol. 2024-8-16

[2]
Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions.

Math Biosci Eng. 2024-3-6

[3]
High-Performance Method for Brain Tumor Feature Extraction in MRI Using Complex Network.

Appl Bionics Biomech. 2023-9-21

[4]
Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques.

Sci Rep. 2023-9-22

[5]
Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain.

J Pers Med. 2023-5-30

[6]
Predicting Histopathological Grading of Adult Gliomas Based On Preoperative Conventional Multimodal MRI Radiomics: A Machine Learning Model.

Brain Sci. 2023-6-5

[7]
The University of California San Francisco Preoperative Diffuse Glioma MRI Dataset.

Radiol Artif Intell. 2022-10-5

[8]
MR brain tissue classification based on the spatial information enhanced Gaussian mixture model.

Technol Health Care. 2022

[9]
Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques.

Front Oncol. 2021-6-1

[10]
Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising.

IEEE Trans Med Imaging. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索