Suppr超能文献

整合生理学和多组学方法以阐明水稻耐热性,实现可持续水稻生产。

Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production.

作者信息

Singh Shilpy, Praveen Afsana, Dudha Namrata, Bhadrecha Pooja

机构信息

Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India.

National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India.

出版信息

Physiol Mol Biol Plants. 2024 Jul;30(7):1185-1208. doi: 10.1007/s12298-024-01480-3. Epub 2024 Jul 3.

Abstract

Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.

摘要

与其他环境应激源相比,热应激带来了独特的挑战,因为预测作物反应和理解耐热机制是复杂的任务。破坏性气候变化的影响不断升级,加剧了热应激的频率和强度,对全球农业生产力构成了显著威胁,特别是在发展中世界依赖水稻的地区。湿度已被证明会对全球水稻产量产生负面影响。植物已经进化出复杂的生化适应机制,涉及基因、蛋白质和代谢物之间的复杂相互作用,以应对各种外部信号并确保其生存。现代组学技术,包括转录组学、代谢组学和蛋白质组学,彻底改变了我们对受胁迫农业植物中发生的复杂生化和细胞变化的理解。整合这些多组学方法可以全面了解细胞对热应激和其他挑战的反应,超越了多组学分析所获得的见解。这种整合对于培育耐热作物品种至关重要,在面对日益不可预测的天气模式时,这一点至关重要。为了加快耐热水稻品种的开发,目标是在全球粮食生产和粮食安全方面实现可持续性,本综述整合了最新的同行评审研究,突出了多组学策略的应用。

相似文献

1
Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production.
Physiol Mol Biol Plants. 2024 Jul;30(7):1185-1208. doi: 10.1007/s12298-024-01480-3. Epub 2024 Jul 3.
2
Nucleic acid-based strategies to mitigate stripe rust disease of wheat for achieving global food security - A review.
Int J Biol Macromol. 2025 Jun 17;319(Pt 4):145353. doi: 10.1016/j.ijbiomac.2025.145353.
3
Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability.
Front Plant Sci. 2021 Oct 22;12:751731. doi: 10.3389/fpls.2021.751731. eCollection 2021.
4
Unlocking Plant Resilience: Metabolomic Insights into Abiotic Stress Tolerance in Crops.
Metabolites. 2025 Jun 9;15(6):384. doi: 10.3390/metabo15060384.
5
Multiple Stressors in Vegetable Production: Insights for Trait-Based Crop Improvement in Cucurbits.
Front Plant Sci. 2022 May 3;13:861637. doi: 10.3389/fpls.2022.861637. eCollection 2022.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
8
Advancements in Water-Saving Strategies and Crop Adaptation to Drought: A Comprehensive Review.
Physiol Plant. 2025 Jul-Aug;177(4):e70332. doi: 10.1111/ppl.70332.
9
Harnessing the potential of millets for climate-resilient and sustainable agriculture.
Front Plant Sci. 2025 Jun 11;16:1574699. doi: 10.3389/fpls.2025.1574699. eCollection 2025.

引用本文的文献

2
Multiomics Studies on the Effects of High-Temperature Stress on Male Sterility in .
Int J Mol Sci. 2025 Apr 14;26(8):3693. doi: 10.3390/ijms26083693.
3
Multi-Omics Approaches Against Abiotic and Biotic Stress-A Review.
Plants (Basel). 2025 Mar 10;14(6):865. doi: 10.3390/plants14060865.
4
Cotton under heat stress: a comprehensive review of molecular breeding, genomics, and multi-omics strategies.
Front Genet. 2025 Mar 18;16:1553406. doi: 10.3389/fgene.2025.1553406. eCollection 2025.

本文引用的文献

1
Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples.
Physiol Mol Biol Plants. 2024 Feb;30(2):185-198. doi: 10.1007/s12298-024-01423-y. Epub 2024 Mar 8.
3
Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change.
Funct Integr Genomics. 2023 Aug 29;23(3):283. doi: 10.1007/s10142-023-01202-0.
5
6
Cytoscape.js 2023 update: a graph theory library for visualization and analysis.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad031.
7
Post-translational modification: a strategic response to high temperature in plants.
aBIOTECH. 2022 Feb 15;3(1):49-64. doi: 10.1007/s42994-021-00067-w. eCollection 2022 Mar.
8
Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates.
Int J Mol Sci. 2022 Mar 4;23(5):2838. doi: 10.3390/ijms23052838.
9
Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice.
Front Plant Sci. 2022 Jan 27;12:803603. doi: 10.3389/fpls.2021.803603. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验