Suppr超能文献

基于列线图的耐碳青霉烯类肺炎克雷伯菌血流感染预测模型:一项回顾性研究

Predictive model for carbapenem-resistant Klebsiella pneumoniae bloodstream infection based on a nomogram: a retrospective study.

作者信息

Guan Jiahao, Ren Yajuan, Dang Xiaojun, Gui Qiaodi, Zhang Wenli, Lu Zifan, Zhang Lixia

机构信息

Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.

Department of Respiratory Medicine II, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.

出版信息

BMC Res Notes. 2025 Jul 1;18(1):265. doi: 10.1186/s13104-025-07325-w.

Abstract

OBJECTIVE

Carbapenem-resistant Klebsiella pneumoniae bloodstream infections (BSIs-CRKP) are associated with high mortality rates, necessitating early risk stratification tools. This study aimed to identify risk factors and develop a nomogram model to predict BSIs-CRKP in hospitalized patients. A single-center retrospective case-control study was conducted at Shaanxi Provincial People's Hospital (2017-2024). Patients with Klebsiella pneumoniae bacteremia were stratified into CRKP (n = 154) and carbapenem-susceptible (CSKP, n = 233) groups. Clinical data, including demographics, comorbidities, treatments, and antimicrobial exposure, were analyzed. Risk factors were identified via multivariate logistic regression, and a nomogram model was developed using R software. Model performance was evaluated using ROC curves, calibration plots, and the Hosmer-Lemeshow test.

RESULTS

Independent risk factors for BSIs-CRKP included indwelling urinary catheterization (OR = 2.531, P = 0.038), central venous catheterization (OR = 2.673, P = 0.015), immunosuppressant use (OR = 3.782, P = 0.006), carbapenem exposure (OR = 4.470, P < 0.001), and age ≥ 65 years (OR = 3.740, P = 0.002). A nomogram model was constructed based on these risk factors, which demonstrated good predictive performance with an area under the curve (AUC) of 0.878 (95% CI: 0.845-0.910) and exhibited excellent calibration (Hosmer-Lemeshow, P = 0.234). This nomogram model effectively stratifies BSIs-CRKP risk using five clinically accessible variables. External validation and integration of genomic data are warranted to enhance generalizability and precision.

摘要

目的

耐碳青霉烯类肺炎克雷伯菌血流感染(BSIs-CRKP)与高死亡率相关,因此需要早期风险分层工具。本研究旨在识别风险因素并开发列线图模型,以预测住院患者的BSIs-CRKP。在陕西省人民医院开展了一项单中心回顾性病例对照研究(2017 - 2024年)。肺炎克雷伯菌菌血症患者被分为CRKP组(n = 154)和碳青霉烯类敏感组(CSKP,n = 233)。对人口统计学、合并症、治疗及抗菌药物暴露等临床数据进行分析。通过多因素逻辑回归识别风险因素,并使用R软件开发列线图模型。使用ROC曲线、校准图和Hosmer-Lemeshow检验评估模型性能。

结果

BSIs-CRKP的独立风险因素包括留置导尿(OR = 2.531,P = 0.038)、中心静脉置管(OR = 2.673,P = 0.015)、使用免疫抑制剂(OR = 3.782,P = 0.006)、碳青霉烯类暴露(OR = 4.470,P < 0.001)及年龄≥65岁(OR = 3.740,P = 0.002)。基于这些风险因素构建了列线图模型,其曲线下面积(AUC)为0.878(95%CI:0.845 - 0.910),显示出良好的预测性能,且校准良好(Hosmer-Lemeshow,P = 0.234)。该列线图模型使用五个临床可获取变量有效地对BSIs-CRKP风险进行分层。需要进行外部验证并整合基因组数据,以提高模型的通用性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65a4/12220204/d0a890624785/13104_2025_7325_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验