Suppr超能文献

人工智能驱动的癌症诊断:通过可重复性、可解释性和多模态提升放射学和病理学水平

Artificial Intelligence-Driven Cancer Diagnostics: Enhancing Radiology and Pathology through Reproducibility, Explainability, and Multimodality.

作者信息

Khosravi Pegah, Fuchs Thomas J, Ho David Joon

机构信息

Department of Biological Sciences, New York City College of Technology, City University of New York, Brooklyn, New York.

Biology and Computer PhD Programs, The CUNY Graduate Center, City University of New York, New York, New York.

出版信息

Cancer Res. 2025 Jul 2;85(13):2356-2367. doi: 10.1158/0008-5472.CAN-24-3630.

Abstract

The integration of artificial intelligence (AI) in cancer research has significantly advanced radiology, pathology, and multimodal approaches, offering unprecedented capabilities in image analysis, diagnosis, and treatment planning. AI techniques provide standardized assistance to clinicians, in which many diagnostic and predictive tasks are manually conducted, causing low reproducibility. These AI methods can additionally provide explainability to help clinicians make the best decisions for patient care. This review explores state-of-the-art AI methods, focusing on their application in image classification, image segmentation, multiple instance learning, generative models, and self-supervised learning. In radiology, AI enhances tumor detection, diagnosis, and treatment planning through advanced imaging modalities and real-time applications. In pathology, AI-driven image analysis improves cancer detection, biomarker discovery, and diagnostic consistency. Multimodal AI approaches can integrate data from radiology, pathology, and genomics to provide comprehensive diagnostic insights. Emerging trends, challenges, and future directions in AI-driven cancer research are discussed, emphasizing the transformative potential of these technologies in improving patient outcomes and advancing cancer care. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

摘要

人工智能(AI)在癌症研究中的整合显著推动了放射学、病理学及多模态方法的发展,在图像分析、诊断和治疗规划方面提供了前所未有的能力。AI技术为临床医生提供标准化辅助,而目前许多诊断和预测任务都是人工进行的,导致可重复性较低。这些AI方法还能提供可解释性,以帮助临床医生为患者护理做出最佳决策。本综述探讨了最先进的AI方法,重点关注其在图像分类、图像分割、多实例学习、生成模型和自监督学习中的应用。在放射学中,AI通过先进的成像模式和实时应用增强肿瘤检测、诊断和治疗规划。在病理学中,AI驱动的图像分析改善癌症检测、生物标志物发现和诊断一致性。多模态AI方法可整合来自放射学、病理学和基因组学的数据,以提供全面的诊断见解。本文讨论了AI驱动的癌症研究中的新兴趋势、挑战和未来方向,强调了这些技术在改善患者预后和推进癌症护理方面的变革潜力。本文是一个特别系列的一部分:利用计算研究、数据科学和机器学习/AI推动癌症发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验