Suppr超能文献

达林(v2.0):挖掘疾病相关数据库以检测生物医学实体关联。

Darling (v2.0): Mining disease-related databases for the detection of biomedical entity associations.

作者信息

Baltoumas Fotis A, Karatzas Evangelos, Venetsianou Nefeli K, Aplakidou Eleni, Giatras Konstantinos, Chasapi Maria N, Chasapi Iro N, Iliopoulos Ioannis, Iconomidou Vassiliki A, Trougakos Ioannis P, Psomopoulos Fotis, Giannakakis Antonis, Georgakopoulos-Soares Ilias, Kontou Panagiota, Bagos Pantelis G, Pavlopoulos Georgios A

机构信息

Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Athens, Greece.

Department of Basic Sciences, School of Medicine, University of Crete, Heraklion 71003, Greece.

出版信息

Comput Struct Biotechnol J. 2025 Jun 14;27:2626-2637. doi: 10.1016/j.csbj.2025.06.025. eCollection 2025.

Abstract

Darling is a web application that employs literature mining to detect disease-related biomedical entity associations. Darling can detect sentence-based cooccurrences of biomedical entities such as genes, proteins, chemicals, functions, tissues, diseases, environments, and phenotypes from biomedical literature found in six disease-centric databases. In this version, we deploy additional query channels focusing on COVID-19, GWAS studies, cardiovascular, neurodegenerative, and cancer diseases. Compared to its predecessor, users now have extended query options including searches with PubMed identifiers, disease records, entity names, titles, single nucleotide polymorphisms, or the Entrez syntax. Furthermore, after applying named entity recognition, one can retrieve and mine the relevant literature from recognized terms for a free input text. Term associations are captured in customizable networks which can be further filtered by either term or co-occurrence frequency and visualized in 2D as weighted graphs or in 3D as multi-layered networks. The fetched terms are organized in searchable tables and clustered annotated documents. The reported genes can be further analyzed for functional enrichment using external applications called from within Darling. The Darling databases, including terms and their associations, are updated annually. Darling is available at: https://www.darling-miner.org/.

摘要

Darling是一个网络应用程序,它利用文献挖掘来检测与疾病相关的生物医学实体关联。Darling可以从六个以疾病为中心的数据库中的生物医学文献中检测基于句子的生物医学实体共现情况,这些实体包括基因、蛋白质、化学物质、功能、组织、疾病、环境和表型。在这个版本中,我们部署了更多专注于COVID-19、全基因组关联研究(GWAS)、心血管疾病、神经退行性疾病和癌症的查询渠道。与之前的版本相比,用户现在有了更多的查询选项,包括使用PubMed标识符、疾病记录、实体名称、标题、单核苷酸多态性或Entrez语法进行搜索。此外,在应用命名实体识别之后,可以从识别出的术语中检索和挖掘与自由输入文本相关的文献。术语关联被捕获在可定制的网络中,这些网络可以通过术语或共现频率进一步过滤,并以二维加权图或三维多层网络的形式可视化。获取的术语被组织在可搜索的表格和聚类注释文档中。可以使用Darling内部调用的外部应用程序对报告的基因进行功能富集的进一步分析。Darling数据库,包括术语及其关联,每年更新一次。Darling可在以下网址获取:https://www.darling-miner.org/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a12/12212154/cdb97d51e95b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验