Xiao Guozhi
State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China.
Acc Chem Res. 2025 Jul 2. doi: 10.1021/acs.accounts.5c00387.
ConspectusCarbohydrates are essential and the most abundant biomolecules, with pivotal roles in numerous biological processes. However, in comparison with proteins and DNA, the biosynthesis of carbohydrates is not a template-driven process but instead a stepwise process, which results in heterogeneous and complex carbohydrate structures. The accessibility of well-defined, pure, and sufficient glycans remains a bottleneck in carbohydrate chemistry, impeding the in-depth biological and functional studies and development of carbohydrate-based therapeutics. To address this issue, we have developed new glycosylation reactions with glycosyl -(1-phenylvinyl)benzoates (PVBs) as versatile donors and new one-pot glycan assembly strategies on the basis of PVB glycosylation for the streamlined synthesis of carbohydrates from oligosaccharides to polysaccharides.The advantages of this new glycosylation reaction protocol include the following: (1) glycosyl PVB donors are readily prepared and shelf-stable, (2) promoters such as NIS and TMSOTf are cheap and readily available, (3) glycosylation yields are generally good to excellent with few side reactions, (4) substrate scopes are broad, (5) the operation of the method is simple, and (6) the method is suitable for the one-pot assembly of glycans. Different from traditional carbohydrate synthesis that is stepwise, tedious, and time-consuming, new one-pot glycan assembly strategies based on PVB donors not only accelerated the synthesis and reduced chemical wastes but also precluded potential issues such as aglycone transfer, undesired interferences of the departing species, and unpleasant odor inherent to one-pot glycosylation with thioglycosides. These one-pot glycan assembly strategies mainly include four tactics: (1) by utilizing the orthogonality of PVB donors, orthogonal one-pot glycosylation could construct diverse glycosidic bonds, including the challenging 1,2--glycosidic linkages, through strategic combinations of PVB donors with the other donors such as glycosyl trichloroacetimidate, -phenyltrifluoroacetimidate, and -alkynylbenzoates; (2) by utilizing the high reactivity of PVB donors, reactivity-based one-pot glycosylation could achieve efficient glycan assembly via the combinations of PVB donors with thioglycosides or -Pen glycosides; (3) through preactivation of PVB donors, preactivation-based one-pot glycosylation could achieve the efficient assembly of different glycosidic linkages, especially 1,2--glycosidic bonds; and (4) through utilizing the orthogonality and reactivity of PVB donors, orthogonal and reactivity-based one-pot glycosylation could construct at least four different glycosidic bonds simultaneously. Indeed, one-pot glycan assembly strategies on the basis of PVB glycosylation method have been successfully applied to the streamlined total synthesis of diverse and complex carbohydrates with important biological activities, including plants glycans such as the undecasaccharide from and tridecasaccharide from , fungi glycans such as nonadecasaccharide from and tetradecasaccharide from , nucleosides such as capuramycin, mucin-related tumor associated carbohydrate antigens, bacterial glycans such as lipopolysaccharide from , and mannose-capped lipoarabinomannan up to 101-mer from .
综述
碳水化合物是必不可少且最为丰富的生物分子,在众多生物过程中发挥着关键作用。然而,与蛋白质和DNA相比,碳水化合物的生物合成并非模板驱动过程,而是一个逐步进行的过程,这导致碳水化合物结构具有异质性和复杂性。获得明确、纯净且充足的聚糖仍然是碳水化合物化学中的一个瓶颈,阻碍了对碳水化合物的深入生物学和功能研究以及基于碳水化合物的治疗药物的开发。为解决这一问题,我们开发了以糖基-(1-苯乙烯基)苯甲酸酯(PVBs)作为通用供体的新糖基化反应,以及基于PVB糖基化的新型一锅法聚糖组装策略,用于从寡糖到多糖的碳水化合物的简化合成。
(1)糖基PVB供体易于制备且储存稳定;(2)诸如NIS和TMSOTf等促进剂价格便宜且易于获得;(3)糖基化产率通常良好至优异,副反应较少;(4)底物范围广泛;(5)该方法操作简单;(6)该方法适用于聚糖的一锅法组装。与传统的逐步、繁琐且耗时的碳水化合物合成不同,基于PVB供体的新型一锅法聚糖组装策略不仅加速了合成并减少了化学废物,还避免了诸如苷元转移、离去基团的不必要干扰以及硫代糖苷一锅法糖基化固有的难闻气味等潜在问题。这些一锅法聚糖组装策略主要包括四种策略:(1)通过利用PVB供体的正交性,正交一锅法糖基化可以通过将PVB供体与其他供体如糖基三氯乙酰亚胺酯、对甲苯基三氟乙酰亚胺酯和炔基苯甲酸酯进行策略性组合来构建各种糖苷键,包括具有挑战性的1,2-糖苷键;(2)通过利用PVB供体的高反应性,基于反应性的一锅法糖基化可以通过将PVB供体与硫代糖苷或戊烯糖苷进行组合来实现高效的聚糖组装;(3)通过对PVB供体进行预活化,基于预活化的一锅法糖基化可以实现不同糖苷键的高效组装,尤其是1,2-糖苷键;(4)通过利用PVB供体的正交性和反应性,基于正交性和反应性的一锅法糖基化可以同时构建至少四种不同的糖苷键。实际上,基于PVB糖基化方法的一锅法聚糖组装策略已成功应用于具有重要生物活性的各种复杂碳水化合物的简化全合成,包括植物聚糖如来自[具体植物]的十一糖和来自[具体植物]的十三糖、真菌聚糖如来自[具体真菌]的十九糖和来自[具体真菌]的十四糖、核苷如卡普霉素、粘蛋白相关的肿瘤相关碳水化合物抗原、细菌聚糖如来自[具体细菌]的脂多糖以及来自[具体来源]的高达101聚体的甘露糖封端的脂阿拉伯甘露聚糖。