Alnasrallah Ahmed Muqdad, Siraj Maheyzah Md, Alrikabi Hanan Ali
Faculty of Education for Pure Sciences, University of Thi-Qar, Nasiriyah, Iraq.
Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia.
PLoS One. 2025 Jul 2;20(7):e0327137. doi: 10.1371/journal.pone.0327137. eCollection 2025.
Information technology has significantly impacted society. IoT and its specialized variant, IoMT, enable remote patient monitoring and improve healthcare. While it contributes to improving healthcare services, it may pose significant security challenges, especially due to the growing interconnectivity of IoMT devices. Hence, a robust IDS is required to handle these issues and prevent future intrusions in a appropriate time. This study proposes an IDS model for the IoMT that integrates advanced feature selection techniques and deep learning to enhance detection performance. The proposed model employs Information Gain (IG) and Recursive Feature Elimination (RFE) in parallel to select the top 50% of features, from which intersection and union subsets are created, followed by a deep autoencoder (DAE) to reduce dimensionality without losing important data. Finally, a deep neural network (DNN) classifies traffic as normal or anomalous. The Experimental results demonstrate superior performance in terms of accuracy, precision, recall, and F1 score. It achieves an accuracy of 99.93% on the WUSTL-EHMS-2020 dataset while reducing training time and attains 99.61% accuracy on the CICIDS2017 dataset. The model performance was validated with an average accuracy of 99.82% ± 0.16% and a statistically significant p-value of 0.0001 on the WUSTL-EHMS-2020 dataset, which refers to stable statistical improvement. This study indicates that the proposed strategy decreases computational complexity and enhances IDS efficiency in resource-constrained IoMT environments.
信息技术对社会产生了重大影响。物联网及其特殊变体医疗物联网实现了远程患者监测并改善了医疗保健。虽然它有助于改善医疗服务,但可能带来重大的安全挑战,尤其是由于医疗物联网设备之间日益增强的互联性。因此,需要一个强大的入侵检测系统来处理这些问题并在适当的时候防止未来的入侵。本研究提出了一种针对医疗物联网的入侵检测系统模型,该模型集成了先进的特征选择技术和深度学习以提高检测性能。所提出的模型并行使用信息增益(IG)和递归特征消除(RFE)来选择前50%的特征,由此创建交集和并集子集,随后使用深度自动编码器(DAE)在不丢失重要数据的情况下降低维度。最后,深度神经网络(DNN)将流量分类为正常或异常。实验结果在准确性、精确率、召回率和F1分数方面表现出卓越的性能。它在WUSTL-EHMS-2020数据集上实现了99.93%的准确率,同时减少了训练时间,在CICIDS2017数据集上达到了99.6%的准确率。在WUSTL-EHMS-2020数据集上,该模型性能得到验证,平均准确率为99.82%±0.16%,p值为0.0001,具有统计学意义,这意味着有稳定的统计改进。本研究表明,所提出的策略降低了计算复杂度并提高了资源受限的医疗物联网环境中的入侵检测系统效率。