Xing Zhaohu, Wan Liang, Fu Huazhu, Yang Guang, Yang Yijun, Yu Lequan, Lei Baiying, Zhu Lei
The Hong Kong University of Science and Technology (Guangzhou), PR China.
The College of Intelligence and Computing, Medical College, Tianjin University, PR China.
Med Image Anal. 2025 Oct;105:103654. doi: 10.1016/j.media.2025.103654. Epub 2025 Jun 16.
Benefiting from the powerful generative capabilities of diffusion models, recent studies have utilized these models to address 2D medical image segmentation problems. However, directly extending these methods to 3D medical image segmentation slice-by-slice does not yield satisfactory results. The reason is that these approaches often ignore the inter-slice relations of 3D medical data and require significant computational costs. To overcome these challenges, we devise the first diffusion-based model (i.e., Diff-UNet) with two branches for general 3D medical image segmentation. Specifically, we devise an additional boundary-prediction branch to predict the auxiliary boundary information of the target segmentation region, which assists the diffusion-denoising branch in predicting 3D segmentation results. Furthermore, we design a Multi-granularity Boundary Aggregation (MBA) module to embed both low-level and high-level boundary features into the diffusion denoising process. Then, we propose a Monte Carlo Diffusion (MC-Diff) module to generate an uncertainty map and define an uncertainty-guided segmentation loss to improve the segmentation results of uncertain pixels. Moreover, during our diffusion inference stage, we develop a Progressive Uncertainty-driven REfinement (PURE) strategy to fuse intermediate segmentation results at each diffusion inference step. Experimental results on the three latest large-scale datasets (i.e., BraTS2023, SegRap2023, and AIIB2023) with diverse organs and modalities show that our Diff-UNet quantitatively and qualitatively outperforms state-of-the-art 3D medical segmentation methods, especially on regions with small or complex structures. Our code is available at the following link: https://github.com/ge-xing/DiffUNet.
受益于扩散模型强大的生成能力,最近的研究利用这些模型来解决二维医学图像分割问题。然而,将这些方法逐片直接扩展到三维医学图像分割并不能产生令人满意的结果。原因是这些方法往往忽略了三维医学数据的切片间关系,并且需要大量的计算成本。为了克服这些挑战,我们设计了第一个基于扩散的模型(即Diff-UNet),用于一般的三维医学图像分割,该模型有两个分支。具体来说,我们设计了一个额外的边界预测分支来预测目标分割区域的辅助边界信息,这有助于扩散去噪分支预测三维分割结果。此外,我们设计了一个多粒度边界聚合(MBA)模块,将低级和高级边界特征嵌入到扩散去噪过程中。然后,我们提出了一个蒙特卡罗扩散(MC-Diff)模块来生成不确定性图,并定义一个不确定性引导的分割损失来改善不确定像素的分割结果。此外,在我们的扩散推理阶段,我们开发了一种渐进不确定性驱动的细化(PURE)策略,在每个扩散推理步骤融合中间分割结果。在三个最新的大规模数据集(即BraTS2023、SegRap2023和AIIB2023)上对不同器官和模态进行的实验结果表明,我们的Diff-UNet在定量和定性上均优于当前最先进的三维医学分割方法,特别是在结构小或复杂的区域。我们的代码可通过以下链接获取:https://github.com/ge-xing/DiffUNet。