Yan Huiqi, Wang Ying, Zhuang Yuting, Cao Yuanyuan, Sun Boyang, Feng Qinlin, Wu Haiyu, Cao Jinbo, Xuan Chenyu, Lu Zeyu, Ma Kaixuan, Zhou Le, Wang Li
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China.
Anal Chem. 2025 Jul 15;97(27):14761-14771. doi: 10.1021/acs.analchem.5c02395. Epub 2025 Jul 2.
Traditional immunochromatographic test strips face significant limitations in detecting trace levels of O157:H7 due to insufficient sensitivity and reliability. To address this challenge, we developed a novel "three-In-One" nanoplatform based on magnetic CoFeO NPs functionalized with horseradish peroxidase (HRP) for dual-channel lateral flow immunoassay (LFIA). The secondary catalytic channel, leveraging HRP-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), enables signal amplification, achieving an unprecedented detection limit of 9 CFU/mL─a 100-fold improvement over conventional gold nanoparticle-based LFIA (930 CFU/mL) and a 10-fold enhancement compared to the noncatalyzed CoFeO system (93 CFU/mL). The CoFeO@HRP nanocomposite demonstrates remarkable synergistic effects, combining the magnetic separation capability of CoFeO with the catalytic activity of HRP. This integration not only enhances detection sensitivity but also improves the aqueous stability and antibody loading capacity. In real food sample analyses (pork and milk), the system exhibits excellent accuracy (recovery rate: 89.29-110.71%) and precision (RSD: 3.31-7.93%). To further optimize detection performance, we implemented a robust machine learning framework incorporating deep neural networks (DNN), random forest regression, and -nearest neighbors algorithms. This predictive model achieved exceptional agreement with experimental results ( > 0.999), 100% classification accuracy at the order-of-magnitude level, and >95% of predictions within Bland-Altman agreement limits. This work establishes a new paradigm for foodborne pathogen detection by synergistically combining nanomaterial engineering with artificial intelligence, offering a novel paradigm in rapid, ultrasensitive, and quantitative diagnostics for food safety monitoring and clinical applications.
传统免疫层析试纸条在检测痕量O157:H7时,由于灵敏度和可靠性不足而面临重大限制。为应对这一挑战,我们开发了一种基于用辣根过氧化物酶(HRP)功能化的磁性CoFeO纳米颗粒的新型“三合一”纳米平台,用于双通道侧向流动免疫分析(LFIA)。二级催化通道利用HRP介导的3,3',5,5'-四甲基联苯胺(TMB)氧化实现信号放大,实现了前所未有的9 CFU/mL检测限,比传统基于金纳米颗粒的LFIA(930 CFU/mL)提高了100倍,比未催化的CoFeO系统(93 CFU/mL)提高了10倍。CoFeO@HRP纳米复合材料表现出显著的协同效应,将CoFeO的磁分离能力与HRP的催化活性结合在一起。这种整合不仅提高了检测灵敏度,还改善了水稳定性和抗体负载能力。在实际食品样品分析(猪肉和牛奶)中,该系统表现出优异的准确度(回收率:89.29 - 110.71%)和精密度(相对标准偏差:3.31 - 7.93%)。为进一步优化检测性能,我们实施了一个强大的机器学习框架,该框架纳入了深度神经网络(DNN)、随机森林回归和 - 最近邻算法。这个预测模型与实验结果达成了极佳的一致性(> 0.999),在数量级水平上分类准确率达到100%,并且在Bland - Altman一致性界限内超过95%的预测结果符合要求。这项工作通过将纳米材料工程与人工智能协同结合,为食源性病原体检测建立了一种新范式,为食品安全监测和临床应用中的快速、超灵敏和定量诊断提供了一种新范式。