Suppr超能文献

通过多组学整合和机器学习鉴定MEG3和MAPK3作为骨关节炎的潜在治疗靶点。

Identification of MEG3 and MAPK3 as potential therapeutic targets for osteoarthritis through multiomics integration and machine learning.

作者信息

Ma Bing, Wang Xiaoru, Xu Chengfei, Xu Zelin, Zhang Fei, Cheng Wendan

机构信息

Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.

Bengbu Third People's Hospital attached to Bengbu Medical University, Bengbu, China.

出版信息

Sci Rep. 2025 Jul 2;15(1):23240. doi: 10.1038/s41598-025-06175-7.

Abstract

Knee osteoarthritis (KOA) is a prevalent degenerative joint disorder, yet its underlying molecular mechanisms remain puzzling. This study aimed to uncover the genes with a causal relationship to KOA using Mendelian randomization (MR), transcriptomic profiling, and machine learning methods. MR analysis was conducted utilizing expression quantitative trait loci (eQTL) data from the eQTLGen consortium alongside KOA-related GWAS summary statistics to identify candidate genes. Subsequently, differential expression analysis and WGCNA were applied to synovial tissue microarray datasets obtained from the GEO database. The intersecting genes were further refined using three machine learning algorithms: LASSO, random forest, and SVM-RFE. Diagnostic efficacy was assessed via ROC curve analysis and nomogram construction. Validation was ultimately performed using qPCR on clinical synovial tissue samples. Twelve genes with putative causal associations to KOA were identified, with MEG3 and MAPK3 emerging as the most diagnostically robust. Both exhibited high sensitivity and specificity in ROC analysis, and their differential expression was corroborated by qPCR. This study underscores the diagnostic utility of MEG3 and MAPK3 in KOA and offers a promising molecular framework for early disease detection. Nonetheless, validation in larger, independent cohorts and further mechanistic investigations are warranted to substantiate these findings.

摘要

膝骨关节炎(KOA)是一种常见的退行性关节疾病,但其潜在的分子机制仍不清楚。本研究旨在利用孟德尔随机化(MR)、转录组分析和机器学习方法,揭示与KOA存在因果关系的基因。利用来自eQTLGen联盟的表达定量性状位点(eQTL)数据以及与KOA相关的全基因组关联研究(GWAS)汇总统计数据进行MR分析,以确定候选基因。随后,对从基因表达综合数据库(GEO)获得的滑膜组织微阵列数据集进行差异表达分析和加权基因共表达网络分析(WGCNA)。使用三种机器学习算法(套索回归、随机森林和支持向量机递归特征消除法)对交集基因进行进一步筛选。通过ROC曲线分析和列线图构建评估诊断效能。最终使用qPCR对临床滑膜组织样本进行验证。确定了12个与KOA存在潜在因果关联的基因,其中母系表达基因3(MEG3)和丝裂原活化蛋白激酶3(MAPK3)在诊断方面表现最为突出。两者在ROC分析中均表现出高敏感性和特异性,并且通过qPCR证实了它们的差异表达。本研究强调了MEG3和MAPK3在KOA中的诊断效用,并为疾病早期检测提供了一个有前景的分子框架。尽管如此,仍需要在更大的独立队列中进行验证并开展进一步的机制研究,以证实这些发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验