Bernal Alexander, Caban Paweł, Rembieliński Jakub
Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
Department of Theoretical Physics, University of Łódź, Pomorska 149/153, 90-236, Łódź, Poland.
Sci Rep. 2025 Jul 2;15(1):23410. doi: 10.1038/s41598-025-07747-3.
We discuss entanglement and the violation of the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality in a system of two vector bosons produced in the decay of a spin-0 particle. We assume the most general CPT conserving, Lorentz- invariant coupling of the spin-0 particle with the daughter bosons. We compute the most general two-boson density matrix obtained by averaging over kinematical configurations with an appropriate probability distribution (which can be obtained when both bosons subsequently decay into fermion-antifermion). We show that the two-boson state is entangled and violates the CGLMP inequality for all values of the (anomalous) coupling constants and that in this case the state is entangled iff it can violate the CGLMP inequality. As an exemplary process of this kind we use the decay [Formula: see text] with anomalous coupling.
我们讨论了在一个由自旋为0的粒子衰变产生的双矢量玻色子系统中的纠缠以及对柯林斯 - 吉辛 - 林登 - 马萨尔 - 波佩斯库(CGLMP)不等式的违背。我们假设自旋为0的粒子与子玻色子之间最一般的、CPT守恒且洛伦兹不变的耦合。我们通过对具有适当概率分布的运动学构型进行平均来计算最一般的双玻色子密度矩阵(当两个玻色子随后都衰变成费米子 - 反费米子对时可得到该概率分布)。我们表明,对于(反常)耦合常数的所有值,双玻色子态都是纠缠的且违背CGLMP不等式,并且在这种情况下,当且仅当该态能违背CGLMP不等式时它才是纠缠的。作为这种类型的一个示例过程,我们使用具有反常耦合的衰变[公式:见原文]。