Suppr超能文献

基于临床肿瘤学数据训练的大语言模型可预测癌症进展。

Large language model trained on clinical oncology data predicts cancer progression.

作者信息

Zhu Menglei, Lin Hui, Jiang Jue, Jinia Abbas J, Jee Justin, Pichotta Karl, Waters Michele, Rose Doori, Schultz Nikolaus, Chalise Sulov, Valleru Lohit, Morin Olivier, Moran Jean, Deasy Joseph O, Pilai Shirin, Nichols Chelsea, Riely Gregory, Braunstein Lior Z, Li Anyi

机构信息

Memorial Sloan Kettering Cancer Center, New York, NY, USA.

University of California San Francisco, San Francisco, CA, USA.

出版信息

NPJ Digit Med. 2025 Jul 2;8(1):397. doi: 10.1038/s41746-025-01780-2.

Abstract

Subspecialty knowledge barriers have limited the adoption of large language models (LLMs) in oncology. We introduce Woollie, an open-source, oncology-specific LLM trained on real-world data from Memorial Sloan Kettering Cancer Center (MSK) across lung, breast, prostate, pancreatic, and colorectal cancers, with external validation using University of California, San Francisco (UCSF) data. Woollie surpasses ChatGPT in medical benchmarks and excels in eight non-medical benchmarks. Analyzing 39,319 radiology impression notes from 4002 patients, it achieved an overall area under the receiver operating characteristic curve (AUROC) of 0.97 for cancer progression prediction on MSK data, including a notable 0.98 AUROC for pancreatic cancer. On UCSF data, it achieved an overall AUROC of 0.88, excelling in lung cancer detection with an AUROC of 0.95. As the first oncology specific LLM validated across institutions, Woollie demonstrates high accuracy and consistency across cancer types, underscoring its potential to enhance cancer progression analysis.

摘要

专科知识壁垒限制了大语言模型(LLMs)在肿瘤学中的应用。我们推出了Woollie,这是一个开源的、针对肿瘤学的大语言模型,它基于纪念斯隆凯特琳癌症中心(MSK)的肺癌、乳腺癌、前列腺癌、胰腺癌和结直肠癌的真实世界数据进行训练,并使用加利福尼亚大学旧金山分校(UCSF)的数据进行外部验证。Woollie在医学基准测试中超越了ChatGPT,并在八项非医学基准测试中表现出色。通过分析4002名患者的39319份放射学印象记录,它在MSK数据上进行癌症进展预测时,受试者工作特征曲线下面积(AUROC)的总体值达到了0.97,其中胰腺癌的AUROC值尤为显著,达到了0.98。在UCSF数据上,它的总体AUROC值为0.88,在肺癌检测方面表现出色,AUROC值为0.95。作为首个跨机构验证的肿瘤学专用大语言模型,Woollie在各种癌症类型中都表现出了高精度和一致性,凸显了其在增强癌症进展分析方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1af3/12223279/de30031ed83c/41746_2025_1780_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验