Itzhak Raziel, Suleymanov Nathan, Minkovich Boris, Kartvelishvili Liana, Kostianovski Vladislav, Korobko Roman, Hayat Alex, Goykhman Ilya
Department of Electrical and Computer Engineering, Technion, Haifa 32000, Israel.
Institute of Applied Physics, The Faculty of Science and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
ACS Appl Opt Mater. 2025 May 20;3(6):1330-1338. doi: 10.1021/acsaom.5c00105. eCollection 2025 Jun 27.
Two-dimensional (2D) semiconductors are promising for photonic applications due to their exceptional optoelectronic properties, including large exciton binding energy, strong spin-orbit coupling, and potential integration with the standard complementary silicon-oxide-semiconductor (CMOS) technology. The dielectric environment can significantly affect the photoluminescence (PL) spectra of transition metal dichalcogenide (TMD) monolayers by modulating excitonic properties such as optical transitions and binding energies. Specifically, substrates with higher dielectric permittivity reduce exciton binding energy and the quasiparticle bandgap. Doping and the charge carrier concentration can further modify the emitted spectra by affecting the PL excitonic content. Increased doping can enhance trion formation and bandgap renormalization phenomena, leading to PL spectral shifts that depend on the semiconductor type. This study systematically investigates the substrate-induced dielectric screening, doping, and trapped charges in CVD-grown n-type 1L-WS and p-type 1L-WSe transferred onto CMOS-relevant SiO and HfO dielectrics. Our results show that p-type 1L-WSe exhibits higher PL intensity and red-shifted trion emission on HfO, whereas n-type 1L-WS shows a blue-shifted, lower-intensity PL for a similar dielectric environment. The difference arises from the interplay of the semiconductor type, doping, dielectric screening, and charge carrier concentration. We demonstrate that suspending the monolayers at the nanoscale enhances PL by reducing nonradiative recombination, enabling controlled micro-PL patterning and the formation of localized emission hot spots. Our results provide valuable insights for the development of next-generation CMOS-compatible optoelectronic devices.
二维(2D)半导体因其优异的光电特性而在光子应用中具有广阔前景,这些特性包括大的激子结合能、强自旋轨道耦合以及与标准互补金属氧化物半导体(CMOS)技术集成的潜力。介电环境可通过调制诸如光学跃迁和结合能等激子特性,显著影响过渡金属二卤化物(TMD)单层的光致发光(PL)光谱。具体而言,具有较高介电常数的衬底会降低激子结合能和准粒子带隙。掺杂和电荷载流子浓度可通过影响PL激子含量进一步改变发射光谱。掺杂增加可增强三重子形成和带隙重整化现象,导致PL光谱位移,该位移取决于半导体类型。本研究系统地研究了转移到与CMOS相关的SiO和HfO电介质上的化学气相沉积(CVD)生长的n型1L-WS和p型1L-WSe中的衬底诱导介电屏蔽、掺杂和俘获电荷。我们的结果表明,p型1L-WSe在HfO上表现出更高的PL强度和红移的三重子发射,而在类似的介电环境下,n型1L-WS则表现出蓝移、低强度的PL。这种差异源于半导体类型、掺杂、介电屏蔽和电荷载流子浓度之间的相互作用。我们证明,在纳米尺度上悬浮单层可通过减少非辐射复合来增强PL,从而实现可控的微PL图案化和局部发射热点的形成。我们的结果为下一代与CMOS兼容的光电器件的开发提供了有价值的见解。