Suppr超能文献

原子级薄半导体中库仑相互作用的静态介电屏蔽近似的失效

Breakdown of the Static Dielectric Screening Approximation of Coulomb Interactions in Atomically Thin Semiconductors.

作者信息

Ben Mhenni Amine, Van Tuan Dinh, Geilen Leonard, Petrić Marko M, Erdi Melike, Watanabe Kenji, Taniguchi Takashi, Tongay Seth Ariel, Müller Kai, Wilson Nathan P, Finley Jonathan J, Dery Hanan, Barbone Matteo

机构信息

Walter Schottky Institute and TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany.

Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany.

出版信息

ACS Nano. 2025 Feb 4;19(4):4269-4278. doi: 10.1021/acsnano.4c11563. Epub 2025 Jan 21.

Abstract

Coulomb interactions in atomically thin materials are remarkably sensitive to variations in the dielectric screening of the environment, which can be used to control exotic quantum many-body phases and engineer exciton potential landscapes. For decades, static or frequency-independent approximations of the dielectric response, where increased dielectric screening is predicted to cause an energy redshift of the exciton resonance, have been sufficient. These approximations were first applied to quantum wells and were more recently extended with initial success to layered transition metal dichalcogenides (TMDs). Here, we use charge-tunable exciton resonances to investigate screening effects in TMD monolayers embedded in materials with low-frequency dielectric constants ranging from 4 to more than 1000, a range of 2 orders of magnitude larger than in previous studies. In contrast to the redshift predicted by static models, we observe a blueshift of the exciton resonance exceeding 30 meV in higher dielectric constant environments. We explain our observations by introducing a dynamical screening model based on a solution to the Bethe-Salpeter equation (BSE). When dynamical effects are strong, we find that the exciton binding energy remains mostly controlled by the low-frequency dielectric response, while the exciton self-energy is dominated by the high-frequency one. Our results supplant the understanding of screening in layered materials and their heterostructures, introduce a knob to tune selected many-body effects, and reshape the framework for detecting and controlling correlated quantum many-body states and designing optoelectronic and quantum devices.

摘要

原子级薄材料中的库仑相互作用对环境的介电屏蔽变化极为敏感,这可用于控制奇异的量子多体相并设计激子势能景观。几十年来,介电响应的静态或与频率无关的近似方法一直足够,在这些近似中,预计增加的介电屏蔽会导致激子共振的能量红移。这些近似方法最初应用于量子阱,最近又成功地扩展到层状过渡金属二卤化物(TMD)。在这里,我们使用电荷可调谐激子共振来研究嵌入低频介电常数范围从4到超过1000的材料中的TMD单层中的屏蔽效应,该范围比以前的研究大2个数量级。与静态模型预测的红移相反,我们观察到在较高介电常数环境中激子共振发生了超过30 meV的蓝移。我们通过引入基于贝特 - 萨尔皮特方程(BSE)解的动态屏蔽模型来解释我们的观察结果。当动态效应很强时,我们发现激子结合能主要由低频介电响应控制,而激子自能则由高频介电响应主导。我们的结果取代了对层状材料及其异质结构中屏蔽的理解,引入了一个调节选定多体效应的旋钮,并重塑了检测和控制相关量子多体状态以及设计光电器件和量子器件的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef2/11803920/319ed2c31391/nn4c11563_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验