Daniel Rebecca Fern, Kannan Subash K, Daroch Namrta, Ganesan Sutharsan, Mozaffer Farhina, Srikantaiah Vishwanath, Shashidhara Lingadahalli Subrahmanya, Mishra Rakesh, Ishtiaq Farah
Tata Institute for Genetics and Society, GKVK Campus, Bellary Road, Bengaluru 560065, India.
Biome Environmental Trust, Bengaluru 560097, India.
Lancet Reg Health Southeast Asia. 2025 Jun 17;39:100619. doi: 10.1016/j.lansea.2025.100619. eCollection 2025 Aug.
Throughout the COVID-19 pandemic, wastewater surveillance emerged as an important tool as an important tool by providing data that are more representative of the population than case reporting, which is often biased towards individuals with health-seeking behaviour or access to healthcare. With changing phases of the pandemic, decreased testing, and varying viral shedding rates, it is crucial to have a robust, sustainable, and flexible wastewater surveillance system that can serve as an independent signal of disease outbreaks. We aimed to identify 'bellwether' sewershed sites for sustainable disease surveillance in Bengaluru, India.
We conducted this longitudinal study from December 2021 to January 2024 at 26 centralised sewershed sites in Bengaluru city (∼11 million inhabitants). We quantified weekly SARS-CoV-2 RNA concentrations to track infection dynamics and identify 'bellwether' sewershed sites. This was achieved by integrating established metrics for wastewater analysis, calculating sample-to-sample percentage rate of change, and applying algorithms to differentiate signal from noise, thereby validating factors contributing to the precision and reliability of outbreak predictions.
Using 2873 wastewater samples, we applied a modified algorithm (COVID-SURGE algorithm) to identify 'bellwether' sewershed sites using longitudinal wastewater data on SARS-CoV-2 from 26 sewershed sites in Bengaluru. We utilised an Excel-based calculator (COVID-SURGE calculator) for user-entered wastewater data that differentiates signal from noise (underlying variability) based on the algorithm, with adjustments made to the input format of viral data and a specified limit of detection (LOD) value from the reverse transcriptase-quantitative PCR kit. We identified 11 'bellwether' sites: four with large catchment sizes (KC Valley 1, KC Valley 2, Rajacanal, Doddabelee); four with medium sizes (Agaram, Nagasandra, KR Puram, Yelahanka); and three with small sizes (Chikkabegur, Chikkabanavara, Lalbagh). These were the best performers and can serve as a useful subset of sewage treatment plants for an early warning system at the city level.
Using wastewater metrics helps in selecting permanent sewershed sites and identifying sub-sites that can be scaled up during peak outbreak periods to detect disease hotspots, or scaled down during lean periods, especially when clinical data are unavailable. In a post-pandemic world, particularly in low-resource settings, focusing on the best-performing sewershed sites will ensure high-quality data that captures valid signals amid the noise from wastewater, conserves resources, and optimises public health actions beyond SARS-CoV-2.
This work has been supported by funding from the Rockefeller Foundation (grant 2021 HTH018) to National Centre for Biological Sciences (TIFR) and the Indian Council of Medical Research grant to (FI) Tata Institute for Genetics and Society and Tata Trusts.
在整个新冠疫情大流行期间,废水监测成为一项重要工具,它所提供的数据比病例报告更能代表人群情况,病例报告往往偏向有求医行为或能获得医疗服务的个体。随着疫情阶段的变化、检测减少以及病毒脱落率的不同,拥有一个强大、可持续且灵活的废水监测系统至关重要,该系统可作为疾病爆发的独立信号。我们旨在确定印度班加罗尔用于可持续疾病监测的“领头羊”排水区域站点。
我们于2021年12月至2024年1月在班加罗尔市(约1100万居民)的26个集中排水区域站点开展了这项纵向研究。我们对每周的新冠病毒2型核糖核酸浓度进行量化,以追踪感染动态并确定“领头羊”排水区域站点。这是通过整合既定的废水分析指标、计算样本间的变化率百分比以及应用算法来区分信号与噪声实现的,从而验证有助于疫情预测准确性和可靠性的因素。
利用2873份废水样本,我们应用一种改良算法(COVID - SURGE算法),根据班加罗尔26个排水区域站点的新冠病毒2型纵向废水数据来确定“领头羊”排水区域站点。我们使用了一个基于Excel的计算器(COVID - SURGE计算器)来处理用户输入的废水数据,该计算器根据算法区分信号与噪声(潜在变异性),并对病毒数据的输入格式和逆转录定量聚合酶链反应试剂盒的指定检测限(LOD)值进行了调整。我们确定了11个“领头羊”站点:4个集水区面积大的站点(KC Valley 1、KC Valley 2、Rajacanal、Doddabelee);4个中等面积的站点(Agaram、Nagasandra、KR Puram、Yelahanka);以及3个小面积的站点(Chikkabegur、Chikkabanavara、Lalbagh)。这些是表现最佳的站点,可作为城市层面早期预警系统中污水处理厂的有用子集。
利用废水指标有助于选择永久性排水区域站点,并识别在疫情爆发高峰期可扩大规模以检测疾病热点、在疫情低谷期可缩小规模的子站点,尤其是在缺乏临床数据时。在疫情后的世界,特别是在资源匮乏的环境中,关注表现最佳的排水区域站点将确保获得高质量数据,这些数据能在废水噪声中捕捉有效信号,节约资源,并优化除新冠病毒2型之外的公共卫生行动。
这项工作得到了洛克菲勒基金会(赠款2021 HTH018)对国家生物科学中心(塔塔基础研究所)的资助,以及印度医学研究理事会对(FI)塔塔遗传与社会研究所和塔塔信托基金的资助。