Suppr超能文献

估算巴西各城市中超加工食品的占比。

Estimating the share of ultra-processed foods in Brazilian municipalities.

作者信息

Cacau Leandro Teixeira, Benicio Maria Helena D'Aquino, Levy Renata Bertazzi, Louzada Maria Laura da Costa

机构信息

Universidade de São Paulo. Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde. São Paulo, SP, Brasil.

Universidade de São Paulo. Faculdade de Saúde Pública. Departamento de Nutrição. São Paulo, SP, Brasil.

出版信息

Rev Saude Publica. 2025 Jun 27;59:e22. doi: 10.11606/s1518-8787.2025059006615. eCollection 2025.

Abstract

OBJECTIVE

To estimate the caloric share of ultra-processed foods (% UPF) in the 5,570 Brazilian municipalities.

METHODS

The estimation of % UPF in municipalities was performed using a statistical prediction model based on data from 46,164 individuals aged over >10 years who participated in the Household Budget Survey (HBS 2017-2018). Multiple linear regression was used to estimate the average % UPF (measured through two 24-hour dietary recalls) based on predictor variables (sex, age, income, education, race/color, urbanity, federative units, and geographic location). The model's adequacy was assessed through residual analysis and by comparing predicted values with those directly measured in POF 2017-2018 using Lin's concordance correlation coefficient (CCC). The linear coefficients obtained from the multiple linear regression model were applied to the sociodemographic data from the 2010 Census (measured similarly to POF) to estimate the % UPF for each municipality.

RESULTS

The statistical model proved adequate, showing normally distributed residuals and a CCC of 0.87, indicating almost perfect agreement. There was heterogeneity in the distribution of % UPF estimates, ranging from 5.75% in Aroeiras do Itaim (PI) to 30.5% in Florianópolis (SC). % UPF estimates were higher (>20%) in municipalities from the South region and the state of São Paulo. Capitals had higher estimates of caloric contribution from ultra-processed foods compared to other municipalities in their states.

CONCLUSIONS

The predictive model revealed differences in % UPF among Brazilian municipalities. The generated estimates can contribute to monitoring ultra-processed food consumption at the municipal level and support the development of public policies focused on promoting healthy eating.

摘要

目的

估算巴西5570个城市中超加工食品的热量占比(%UPF)。

方法

利用基于46164名年龄超过10岁且参与家庭预算调查(2017 - 2018年)的个体数据的统计预测模型,对各城市的%UPF进行估算。采用多元线性回归,根据预测变量(性别、年龄、收入、教育程度、种族/肤色、城市化程度、联邦单位和地理位置)估算平均%UPF(通过两次24小时饮食回忆法测量)。通过残差分析以及使用林氏一致性相关系数(CCC)将预测值与2017 - 2018年个人食物消费调查(POF)中直接测量的值进行比较,评估模型的适用性。将多元线性回归模型得到的线性系数应用于2010年人口普查的社会人口数据(测量方式与POF类似),以估算每个城市的%UPF。

结果

统计模型证明适用,残差呈正态分布,CCC为0.87,表明几乎完全一致。%UPF估算值的分布存在异质性,范围从伊塔伊姆的阿雷拉斯(皮奥伊州)的5.75%到弗洛里亚诺波利斯(圣卡塔琳娜州)的30.5%。南部地区和圣保罗州各城市的%UPF估算值较高(>20%)。与所在州的其他城市相比,首府城市中超加工食品的热量贡献估算值更高。

结论

预测模型揭示了巴西各城市在%UPF方面的差异。生成的估算值有助于在城市层面监测超加工食品的消费情况,并支持制定侧重于促进健康饮食的公共政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bc4/12207894/e2591b601c19/1518-8787-rsp-59-e22-gf01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验