Suppr超能文献

开发一种使用机器学习的自动化、通用的术后呼吸衰竭预测工具:一项回顾性队列研究。

Development of an automated, general-purpose prediction tool for postoperative respiratory failure using machine learning: A retrospective cohort study.

机构信息

Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA.

Center for Health Data Innovations, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

J Clin Anesth. 2023 Nov;90:111194. doi: 10.1016/j.jclinane.2023.111194. Epub 2023 Jul 7.

Abstract

STUDY OBJECTIVE

Postoperative respiratory failure is a major surgical complication and key quality metric. Existing prediction tools underperform, are limited to specific populations, and necessitate manual calculation. This limits their implementation. We aimed to create an improved, machine learning powered prediction tool with ideal characteristics for automated calculation.

DESIGN, SETTING, AND PATIENTS: We retrospectively reviewed 101,455 anesthetic procedures from 1/2018 to 6/2021. The primary outcome was the Standardized Endpoints in Perioperative Medicine consensus definition for postoperative respiratory failure. Secondary outcomes were respiratory quality metrics from the National Surgery Quality Improvement Sample, Society of Thoracic Surgeons, and CMS. We abstracted from the electronic health record 26 procedural and physiologic variables previously identified as respiratory failure risk factors. We randomly split the cohort and used the Random Forest method to predict the composite outcome in the training cohort. We coined this the RESPIRE model and measured its accuracy in the validation cohort using area under the receiver operating curve (AUROC) analysis, among other measures, and compared this with ARISCAT and SPORC-1, two leading prediction tools. We compared performance in a validation cohort using score cut-offs determined in a separate test cohort.

MAIN RESULTS

The RESPIRE model exhibited superior accuracy with an AUROC of 0.93 (95% CI, 0.92-0.95) compared to 0.82 for both ARISCAT and SPORC-1 (P-for-difference < 0.0001 for both). At comparable 80-90% sensitivities, RESPIRE had higher positive predictive value (11%, 95% CI: 10-12%) and lower false positive rate (12%, 95% CI: 12-13%) compared to 4% and 37% for both ARISCAT and SPORC-1. The RESPIRE model also better predicted the established quality metrics for postoperative respiratory failure.

CONCLUSIONS

We developed a general-purpose, machine learning powered prediction tool with superior performance for research and quality-based definitions of postoperative respiratory failure.

摘要

研究目的

术后呼吸衰竭是一种主要的手术并发症,也是关键的质量指标。现有的预测工具表现不佳,仅限于特定人群,且需要手动计算,这限制了它们的应用。我们旨在创建一个改进的、基于机器学习的预测工具,具有自动计算的理想特征。

设计、设置和患者:我们回顾性分析了 2018 年 1 月至 2021 年 6 月的 101455 例麻醉手术。主要结局是围手术期医学标准化结局共识定义的术后呼吸衰竭。次要结局是来自国家手术质量改进样本、胸外科医生协会和 CMS 的呼吸质量指标。我们从电子健康记录中提取了 26 个程序和生理变量,这些变量先前被确定为呼吸衰竭的危险因素。我们随机分割队列,并在训练队列中使用随机森林方法预测复合结局。我们将其命名为 RESPIRE 模型,并使用接收器操作特征曲线(AUROC)分析等方法在验证队列中测量其准确性,并与 ARISCAT 和 SPORC-1 这两种领先的预测工具进行比较。我们使用在单独的测试队列中确定的评分截止值在验证队列中比较性能。

主要结果

RESPIRE 模型的准确性更高,AUROC 为 0.93(95%CI,0.92-0.95),优于 ARISCAT 和 SPORC-1 的 0.82(两者的 P 值均小于 0.0001)。在具有可比性的 80%-90%敏感性时,RESPIRE 的阳性预测值更高(11%,95%CI:10%-12%),假阳性率更低(12%,95%CI:12%-13%),而 ARISCAT 和 SPORC-1 的阳性预测值分别为 4%和 37%。RESPIRE 模型还更好地预测了术后呼吸衰竭的既定质量指标。

结论

我们开发了一种通用的、基于机器学习的预测工具,具有研究和基于质量的术后呼吸衰竭定义的卓越性能。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验