Suppr超能文献

应激反应蛋白REDD2的快速蛋白酶体降解由E3连接酶HUWE1介导。

Rapid proteasomal degradation of the stress response protein REDD2 is mediated by the E3 ligase HUWE1.

作者信息

VanCleave Ashley M, Sunilkumar Siddharth, McCurry Christopher M, Toro Allyson L, Kimball Scot R, Dennis Michael D

机构信息

Department of Cell and Biological Systems, Penn State College of Medicine, Hershey, PA, 17033, USA.

Department of Cell and Biological Systems, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.

出版信息

Biochem Biophys Res Commun. 2025 Sep 1;777:152270. doi: 10.1016/j.bbrc.2025.152270. Epub 2025 Jun 28.

Abstract

The stress response proteins regulated in development and DNA damage (REDD)1 and REDD2 act as negative regulators of mechanistic target of rapamycin complex 1 (mTORC1). Prior studies support that REDD1 is rapidly degraded via both chaperone-mediated autophagy (CMA) and the ubiquitin proteasome system (UPS). Compared to REDD1, relatively little is known regarding the regulation of REDD2. The objective here was to investigate the molecular mechanisms that control the cellular abundance of REDD2. Genetic and pharmacologic interventions were used to manipulate protein synthesis and proteolysis. We found that both REDD1 and REDD2 were rapidly degraded with half-lives of <20 min. Interestingly, REDD2 expression reduced the rate of REDD1 degradation, suggesting that the molecular mechanism through which they are degraded overlaps. However, in contrast with REDD1, CMA activation did not promote REDD2 degradation, despite the conservation of a putative KFERQ-like motif sequence in REDD2. Instead, we provide evidence that the rapid degradation of REDD2 was mediated by the UPS, the E3 ligase HUWE1, and K119/K120 of REDD2. The findings support that the cellular abundance of both REDD1 and REDD2 are controlled at the level of protein stability.

摘要

发育及DNA损伤调控的应激反应蛋白(REDD)1和REDD2作为雷帕霉素作用机制靶点复合物1(mTORC1)的负调控因子。先前的研究表明,REDD1可通过伴侣介导的自噬(CMA)和泛素蛋白酶体系统(UPS)迅速降解。与REDD1相比,关于REDD2调控的了解相对较少。本文的目的是研究控制REDD2细胞丰度的分子机制。采用基因和药理学干预手段来调控蛋白质合成和蛋白水解。我们发现REDD1和REDD2均迅速降解,半衰期<20分钟。有趣的是,REDD2的表达降低了REDD1的降解速率,这表明它们的降解分子机制存在重叠。然而,与REDD1不同,尽管REDD2中存在假定的类KFERQ基序序列,但CMA激活并未促进REDD2的降解。相反,我们提供的证据表明,REDD2的快速降解是由UPS、E3连接酶HUWE1以及REDD2的K119/K120介导的。这些发现支持了REDD1和REDD2的细胞丰度均在蛋白质稳定性水平上受到控制。

相似文献

本文引用的文献

4
Proteome-wide analysis of chaperone-mediated autophagy targeting motifs.伴侣蛋白介导的自噬靶向基序的蛋白质组分析。
PLoS Biol. 2019 May 31;17(5):e3000301. doi: 10.1371/journal.pbio.3000301. eCollection 2019 May.
7
REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy.REDD1 缺失可预防地塞米松诱导的骨骼肌萎缩。
Am J Physiol Endocrinol Metab. 2014 Dec 1;307(11):E983-93. doi: 10.1152/ajpendo.00234.2014. Epub 2014 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验