Suppr超能文献

具有生物催化刺突的人工噬菌体协同根除抗生素耐药生物膜。

Artificial Phages with Biocatalytic Spikes for Synergistically Eradicating Antibiotic-Resistant Biofilms.

机构信息

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China.

Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany.

出版信息

Adv Mater. 2024 Aug;36(32):e2404411. doi: 10.1002/adma.202404411. Epub 2024 Jun 10.

Abstract

Antibiotic-resistant pathogens have become a global public health crisis, especially biofilm-induced refractory infections. Efficient, safe, and biofilm microenvironment (BME)-adaptive therapeutic strategies are urgently demanded to combat antibiotic-resistant biofilms. Here, inspired by the fascinating biological structures and functions of phages, the de novo design of a spiky Ir@CoO particle is proposed to serve as an artificial phage for synergistically eradicating antibiotic-resistant Staphylococcus aureus biofilms. Benefiting from the abundant nanospikes and highly active Ir sites, the synthesized artificial phage can simultaneously achieve efficient biofilm accumulation, extracellular polymeric substance (EPS) penetration, and superior BME-adaptive reactive oxygen species (ROS) generation, thus facilitating the in situ ROS delivery and enhancing the biofilm eradication. Moreover, metabolomics found that the artificial phage obstructs the bacterial attachment to EPS, disrupts the maintenance of the BME, and fosters the dispersion and eradication of biofilms by down-regulating the associated genes for the biosynthesis and preservation of both intra- and extracellular environments. The in vivo results demonstrate that the artificial phage can treat the biofilm-induced recalcitrant infected wounds equivalent to vancomycin. It is suggested that the design of this spiky artificial phage with synergistic "penetrate and eradicate" capability to treat antibiotic-resistant biofilms offers a new pathway for bionic and nonantibiotic disinfection.

摘要

抗药性病原体已成为全球公共卫生危机,尤其是生物膜引起的难治性感染。为了对抗抗药性生物膜,急需高效、安全且适应生物膜微环境(BME)的治疗策略。受噬菌体迷人的生物结构和功能的启发,本研究设计了一种具有刺状结构的 Ir@CoO 粒子作为人工噬菌体,以协同清除抗药性金黄色葡萄球菌生物膜。得益于丰富的纳米刺和高活性的 Ir 位点,所合成的人工噬菌体可以同时实现高效的生物膜积累、胞外聚合物(EPS)渗透以及优越的 BME 适应型活性氧(ROS)生成,从而促进原位 ROS 传递并增强生物膜清除效果。此外,代谢组学研究发现,人工噬菌体阻止了细菌对 EPS 的附着,破坏了 BME 的维持,并通过下调与生物膜形成和胞内外环境维持相关的基因,促进生物膜的分散和清除。体内实验结果表明,这种人工噬菌体在治疗生物膜诱导的难治性感染伤口方面等效于万古霉素。这项研究表明,设计具有协同“穿透和清除”能力的刺状人工噬菌体来治疗抗药性生物膜为仿生和非抗生素消毒提供了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验