Bhargavi K M, Ashwini Kumari P, Hussain Basha C H, Girija Kanaka Jothi S, Prashanth V, Shetty Nayana
School of Electrical and Electronics Engineering, REVA University, Bangalore, 560064, India.
Department of Electrical and Electronics Engineering, SR University, Hanumakonda, Warangal, 506371, Telangana, India.
Sci Rep. 2024 Aug 30;14(1):20194. doi: 10.1038/s41598-024-71167-y.
In today's context, there is a clear preference for DC microgrids over AC microgrids due to their better compatibility with generating sources, loads, and battery energy storage systems (BESS). However, the intermittent nature of renewable resources disrupts the balance between power generation and load demand. It raises concerns regarding power management and quality in the power system. Control strategies are essential to address these challenges. This article focuses on developing a novel control strategy to ensure stability in microgrid systems. The proposed control structure utilizes a second-order multi-agent system (MAS) to enhance the power-sharing and coordination in the microgrid network. For effective control of battery energy storage units, a Voltage-Power (V-P) reference-based droop control and leader-follower consensus method is employed. The control approach consists of primary and secondary control layers. The primary layer uses a V-P reference-based droop control strategy to allocate load components to storage units. The secondary control layer aims to restore DC bus voltage using a MAS-based consensus protocol. The MAS approach offers greater flexibility and requires less computational power than other strategies such as Model Predictive Control (MPC). The enhanced control structure incorporates a current ratio modification loop to adjust the current ratio between the converters, thereby modifying gain and improving the voltage profile. This novel control optimizes the reliability and stability of the proposed DC microgrid system. The effectiveness of the enhanced consensus-based secondary control strategy is demonstrated using the MATLAB/Simulink platform.
在当今背景下,由于直流微电网与发电电源、负载及电池储能系统(BESS)具有更好的兼容性,相较于交流微电网,它明显更受青睐。然而,可再生资源的间歇性破坏了发电与负载需求之间的平衡,引发了对电力系统中功率管理和电能质量的担忧。控制策略对于应对这些挑战至关重要。本文着重于开发一种新颖的控制策略,以确保微电网系统的稳定性。所提出的控制结构利用二阶多智能体系统(MAS)来增强微电网网络中的功率分配和协调。为有效控制电池储能单元,采用了基于电压 - 功率(V - P)参考的下垂控制和领导者 - 跟随者一致性方法。该控制方法由主控制层和次控制层组成。主控制层使用基于V - P参考的下垂控制策略将负载分量分配给储能单元。次控制层旨在使用基于MAS的一致性协议恢复直流母线电压。与诸如模型预测控制(MPC)等其他策略相比,MAS方法具有更大的灵活性且所需计算能力更少。增强型控制结构并入了电流比修正回路,以调整变流器之间的电流比,从而修正增益并改善电压分布。这种新颖的控制优化了所提出的直流微电网系统的可靠性和稳定性。使用MATLAB/Simulink平台展示了基于增强型一致性的次控制策略的有效性。