Akhatar Javed, Goyal Anna, Mittal Meenakshi, Verma Heena, Gurpreet Kaur, Kaur Beerpal, Banga Surinder S, Atri Chhaya
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
Sci Rep. 2025 Jul 4;15(1):23977. doi: 10.1038/s41598-025-07758-0.
Mustard, a major source of edible and industrial grade oils in the Indian subcontinent and various regions of Australia, Eastern Europe, and Canada, is also a protein resource for the animal feed industry. Silique and seed size are key traits for mustard improvement, but their inheritance mechanisms are not fully understood. We evaluated 92 inbred lines for silique length, seeds per silique, seed size, and rupture energy required to shatter a pod at three levels of nitrogen application in two crop seasons. Genotypes showed large phenotypic variations and a continuous distribution for all silique-related traits, suggesting a quantitative inheritance. Genotype × nitrogen interactions were significant for silique length, seeds per silique, and rupture energy. Association analysis identified 59 significant SNPs, whose annotations facilitated the prediction of 16 important genes underlying observed phenotypic variations. These genes are associated with silique formation (SHP2), grain formation (BG1, BG4), cell elongation (BRI1), grain filling (AT1G12500, AT1G77610, SWEET1, and AT3G14410), and silique shattering (UBP15, CO, INDEHISCENT, AGAMOUS1, FRUITFULL, and SHP2). RNA-seq data from 18 mustard genotypes revealed expression-level variations for identified candidate genes. Upregulation of SHP2 for SPS and resistance to silique shattering was observed, while downregulation of BG4 was observed in two genotypes with smallest seeds. This study provides valuable insight that may facilitate the marker-assisted selection (MAS) breeding for silique traits.
芥菜是印度次大陆以及澳大利亚、东欧和加拿大各地区食用和工业级油的主要来源,也是动物饲料行业的蛋白质资源。角果和种子大小是芥菜改良的关键性状,但其遗传机制尚未完全了解。我们在两个作物季节的三个施氮水平下,对92个自交系的角果长度、每角果种子数、种子大小以及荚果破碎所需的破裂能量进行了评估。基因型在所有与角果相关的性状上表现出较大的表型变异和连续分布,表明其为数量遗传。基因型×氮互作对角果长度、每角果种子数和破裂能量有显著影响。关联分析鉴定出59个显著的单核苷酸多态性(SNP),其注释有助于预测观察到的表型变异背后的16个重要基因。这些基因与角果形成(SHP2)、籽粒形成(BG1、BG4)、细胞伸长(BRI1)、籽粒充实(AT1G12500、AT1G77610、SWEET1和AT3G14410)以及角果开裂(UBP15、CO、INDEHISCENT、AGAMOUS1、FRUITFULL和SHP2)有关。来自18个芥菜基因型的RNA测序数据揭示了已鉴定候选基因的表达水平变异。观察到SPS中SHP2上调且对角果开裂有抗性,而在种子最小的两个基因型中观察到BG4下调。本研究提供了有价值的见解,可能有助于角果性状的标记辅助选择(MAS)育种。