Atherton J, Chegkazi M S, Leusciatti M, Di Palma M, Peirano E, Pozzer L S, Meli M V A, Pasqualato S, Foran T, Morra G, Steiner R A
Randall Centre for Cell and Molecular Biophysics, King's College London - New Hunt's House, Guy's Campus, London, UK.
ELIXIR Hub, South Building, Wellcome Genome Campus, Hinxton, Cambridge, UK.
Nat Commun. 2025 Jul 5;16(1):6214. doi: 10.1038/s41467-025-61498-3.
Kinesin-1 is a processive dimeric ATP-driven motor that transports vital intracellular cargos along microtubules (MTs). If not engaged in active transport, kinesin-1 limits futile ATP hydrolysis by adopting a compact autoinhibited conformation that involves an interaction between its C-terminal tail and the N-terminal motor domains. Here, using a chimeric kinesin-1 that fuses the N-terminal motor region to the tail and a tail variant unable to interact with the motors, we employ cryo-EM to investigate elements of the MT-associated mechanochemical cycle. We describe a missing structure for the proposed two-step allosteric mechanism of ADP release, the ATPase rate limiting step. It shows that MT association remodels the hydrogen bond network at the nucleotide binding site triggering removal of the Mg ion from the Mg-ADP complex. This results in a strong MT-binding apo-like state before ADP dissociation, which molecular dynamics simulations indicate is mediated by loop 9 dynamics. We further demonstrate that tail association does not directly affect this mechanism, nor the adoption of the ATP hydrolysis-competent conformation, nor neck linker docking/undocking, even when zippering the two motor domains. We propose a revised mechanism for tail-dependent kinesin-1 autoinhibition and suggest a possible explanation for its characteristic pausing behavior on MTs.
驱动蛋白-1是一种由二聚体组成的、由ATP驱动的进行性分子马达,可沿微管(MTs)运输重要的细胞内货物。如果不参与主动运输,驱动蛋白-1会通过采用紧凑的自抑制构象来限制无效的ATP水解,这种构象涉及其C末端尾部与N末端马达结构域之间的相互作用。在这里,我们使用一种将N末端马达区域与尾部融合的嵌合驱动蛋白-1以及一种无法与马达相互作用的尾部变体,采用低温电子显微镜来研究与MT相关的机械化学循环的元素。我们描述了所提出的ADP释放两步变构机制(ATPase限速步骤)中缺失的结构。结果表明,MT结合重塑了核苷酸结合位点处的氢键网络,触发了Mg离子从Mg-ADP复合物中的移除。这导致在ADP解离之前形成一种强MT结合的脱辅基样状态,分子动力学模拟表明这是由环9动力学介导的。我们进一步证明,即使在将两个马达结构域拉链化时,尾部结合也不会直接影响这一机制,也不会影响ATP水解活性构象的采用,也不会影响颈部连接子的对接/解对接。我们提出了一种经修订的尾部依赖性驱动蛋白-1自抑制机制,并对其在MT上的特征性暂停行为提出了一种可能的解释。