Suppr超能文献

通过跨化学元素的迁移学习提升机器学习潜力。

Enhancing Machine Learning Potentials through Transfer Learning across Chemical Elements.

作者信息

Röcken Sebastien, Zavadlav Julija

机构信息

Professorship of Multiscale Modeling of Fluid Materials, Department of Engineering Physics and Computation, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany.

Atomistic Modeling Center, Munich Data Science Institute, Technical University of Munich, Garching 85748, Germany.

出版信息

J Chem Inf Model. 2025 Jul 28;65(14):7406-7414. doi: 10.1021/acs.jcim.5c00293. Epub 2025 Jul 7.

Abstract

Machine learning potentials (MLPs) can enable simulations of ab initio accuracy at orders of magnitude lower computational cost. However, their effectiveness hinges on the availability of considerable data sets to ensure robust generalization across chemical space and thermodynamic conditions. The generation of such data sets can be labor-intensive, highlighting the need for innovative methods to train MLPs in data-scarce scenarios. Here, we introduce transfer learning of potential energy surfaces between chemically similar elements. Specifically, we leverage the trained MLP for silicon to initialize and expedite the training of an MLP for germanium. Utilizing classical force field and ab initio data sets, we demonstrate that transfer learning surpasses traditional training from scratch in force prediction, leading to more stable simulations and improved temperature transferability. These advantages become even more pronounced as the training data set size decreases. We also observe positive transfer learning effects for most out-of-target properties. Our findings demonstrate that transfer learning across chemical elements is a promising technique for developing accurate and numerically stable MLPs, particularly in a data-scarce regime.

摘要

机器学习势(MLP)能够以低几个数量级的计算成本实现从头算精度的模拟。然而,它们的有效性取决于是否有大量数据集,以确保在化学空间和热力学条件下具有强大的泛化能力。生成这样的数据集可能非常耗费人力,这凸显了在数据稀缺的情况下需要创新方法来训练MLP。在这里,我们引入了化学相似元素之间势能面的迁移学习。具体来说,我们利用针对硅训练的MLP来初始化并加速针对锗的MLP的训练。利用经典力场和从头算数据集,我们证明迁移学习在力预测方面优于传统的从头训练,从而实现更稳定的模拟并提高温度转移性。随着训练数据集规模的减小,这些优势变得更加明显。我们还观察到对于大多数目标外属性有正向迁移学习效果。我们的研究结果表明,跨化学元素的迁移学习是开发准确且数值稳定的MLP的一种有前途的技术,特别是在数据稀缺的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418e/12308786/ec921e7e3916/ci5c00293_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验