Temudo Ainsley, Dolfen Nina, King Bradley R, Albouy Genevieve
Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, Utah, United States of America.
Department of Psychology, Columbia University, New York, New York, United States of America.
PLoS Biol. 2025 Jul 7;23(7):e3003267. doi: 10.1371/journal.pbio.3003267. eCollection 2025 Jul.
Memory systems in humans are less segregated than initially thought as learning tasks from different memory domains (e.g., declarative versus procedural) can recruit similar brain areas. However, it remains unclear whether the functional role of these overlapping brain regions - and the hippocampus in particular - is domain-general. Here, we test the hypothesis that the hippocampus encodes and preserves the temporal order of sequential information irrespective of the nature of that information. We used multivariate pattern analyses (MVPA) of functional magnetic resonance imaging (fMRI) data acquired during the execution of learned sequences of movements and objects to assess brain patterns related to procedural and declarative memory processes, respectively. We also tested whether the hippocampus represents information about temporal order of items (here movements and objects in the motor and declarative domains, respectively) in a learned sequence irrespective of their nature. We also examined such coding in brain regions involved in both motor (primary and premotor cortices) and object (perirhinal cortex and parahippocampus) sequence learning. Our results suggest that hippocampal and perirhinal multivoxel activation patterns do not carry information about specific items or temporal position in a random series of objects or movements. Rather, these regions code for the representation of items in their learned temporal position in sequences irrespective of their nature (i.e., item-position coding). In contrast, although all other ROIs showed evidence of item-position coding, this representation could - at least partially - be attributed to the coding of other information such as position information. Altogether, our findings indicate that regions in the medial temporal lobe represent the temporal order of sequential information similarly in both the declarative and the motor memory domains. Our data suggest that these regions contribute to the development of item-position maps that might provide a cognitive framework for sequential behaviors irrespective of their nature.
人类的记忆系统不像最初认为的那样分隔明显,因为来自不同记忆领域(例如,陈述性记忆与程序性记忆)的学习任务可以激活相似的脑区。然而,这些重叠脑区(尤其是海马体)的功能作用是否具有领域通用性仍不清楚。在这里,我们检验了这样一个假设:海马体对序列信息的时间顺序进行编码和保存,而不考虑该信息的性质。我们对在执行学习到的动作序列和物体序列时获取的功能磁共振成像(fMRI)数据进行了多变量模式分析(MVPA),以分别评估与程序性记忆和陈述性记忆过程相关的脑模式。我们还测试了海马体是否在学习序列中表征项目(这里分别指运动和陈述性领域中的动作和物体)的时间顺序信息,而不考虑它们的性质。我们还研究了参与运动(初级运动皮层和运动前区皮层)和物体(嗅周皮层和海马旁回)序列学习的脑区中的这种编码。我们的结果表明,海马体和嗅周皮层的多体素激活模式在一系列随机的物体或动作中并不携带关于特定项目或时间位置的信息。相反,这些区域对序列中已学习到的时间位置上的项目表征进行编码,而不考虑它们的性质(即项目 - 位置编码)。相比之下,尽管所有其他感兴趣区域(ROI)都显示出项目 - 位置编码的证据,但这种表征至少部分可归因于对其他信息(如位置信息)的编码。总之,我们的研究结果表明,内侧颞叶区域在陈述性和运动记忆领域中对序列信息的时间顺序进行类似的表征。我们的数据表明,这些区域有助于项目 - 位置图谱的形成,这可能为不考虑其性质的序列行为提供一个认知框架。