Instituto de Fisiología y Biofísica (IFIBIO) Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Fisiología y Biofísica, Universidad de Buenos Aires, Buenos Aires, 1121, Argentina.
Douglas Mental Health Research Institute, McGill University, Montreal, QC, H4H 1R3, Canada.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23898-23903. doi: 10.1073/pnas.2009576117. Epub 2020 Sep 8.
Recent evidence suggests that gains in performance observed while humans learn a novel motor sequence occur during the quiet rest periods interleaved with practice (micro-offline gains, MOGs). This phenomenon is reminiscent of memory replay observed in the hippocampus during spatial learning in rodents. Whether the hippocampus is also involved in the production of MOGs remains currently unknown. Using a multimodal approach in humans, here we show that activity in the hippocampus and the precuneus increases during the quiet rest periods and predicts the level of MOGs before asymptotic performance is achieved. These functional changes were followed by rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that reactivates during the quiet periods of training undergoes structural plasticity. Our work points to the involvement of the hippocampal system in the reactivation of procedural memories.
最近的证据表明,在人类学习新的运动序列期间,在练习之间插入的安静休息期间会观察到表现的提高(微离线增益,MOG)。这种现象让人联想到在啮齿动物的空间学习过程中观察到的海马体中的记忆重放。海马体是否也参与 MOG 的产生目前尚不清楚。在这里,我们使用人类的多模态方法表明,在安静休息期间,海马体和后扣带回的活动增加,并在达到渐近表现之前预测 MOG 的水平。这些功能变化随后在几分钟的时间内迅速改变大脑的微观结构,表明在训练的安静期间重新激活的相同网络会经历结构可塑性。我们的工作表明海马系统参与了程序记忆的再激活。