Suppr超能文献

通过具有辅助融合层和残差块的融合深度学习模型增强对内镜图像中结肠疾病的检测

Enhanced Detection of Colon Diseases via a Fused Deep Learning Model with an Auxiliary Fusion Layer and Residual Blocks on Endoscopic Images.

作者信息

Kumar Rakesh, Anand Vatsala, Gupta Sheifali, Almogren Ahmad, Bharany Salil, Altameem Ayman, Rehman Ateeq Ur

机构信息

Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh11633, Saudi Arabia.

出版信息

Curr Med Imaging. 2025;21:e15734056353246. doi: 10.2174/0115734056353246241209060804.

Abstract

BACKGROUND

Colon diseases are major global health issues that often require early detection and correct diagnosis to be effectively treated. Deep learning approaches and recent developments in medical imaging have demonstrated promise in increasing diagnostic accuracy.

OBJECTIVE

This work suggests that a Convolutional Neural Network (CNN) model paired with other models can detect different gastrointestinal (GI) abnormalities or diseases from endoscopic images via the fusion of residual blocks, including alpha dropouts (αDO) and auxiliary fusing layers.

METHODS

To automatically diagnose colon disorders from medical images, this work explores the use of a fused deeplearning model that incorporates the EfficientNetB0, MobileNetV2, and ResNet50V2 architectures. By integrating these features, the fused model aims to improve the classification accuracy and robustness for various colon diseases. The proposed model incorporates an auxiliary fusion layer and a fusion residual block. By combining diverse features through an auxiliary fusion layer, the network can create more comprehensive and richer representations, capturing intricate patterns that might be missed by single-source processing. The fusion residual block incorporates residual connections, which help mitigate the vanishing gradient problem. By adding the input of the block directly to its output, these connections facilitate better gradient flow during backpropagation, allowing for deeper and more stable training. A wide range of endoscopic images are used to assess the proposed model, offering an accurate depiction of various disease scenarios.

CONCLUSION

The proposed method developed a lightweight model that correctly identifies disorders of the gastrointestinal (GI) tract by combining advanced techniques, including feature fusion, residual learning, and self-normalization.

摘要

背景

结肠疾病是重大的全球健康问题,通常需要早期检测和正确诊断才能得到有效治疗。深度学习方法和医学成像领域的最新进展已显示出提高诊断准确性的潜力。

目的

这项工作表明,一个与其他模型配对的卷积神经网络(CNN)模型可以通过融合包括阿尔法随机失活(αDO)和辅助融合层在内的残差块,从内镜图像中检测出不同的胃肠道(GI)异常或疾病。

方法

为了从医学图像中自动诊断结肠疾病,这项工作探索了使用一种融合深度学习模型,该模型结合了EfficientNetB0、MobileNetV2和ResNet50V2架构。通过整合这些特征,融合模型旨在提高对各种结肠疾病的分类准确性和鲁棒性。所提出的模型包含一个辅助融合层和一个融合残差块。通过辅助融合层组合不同特征,网络可以创建更全面、更丰富的表示,捕捉单源处理可能遗漏的复杂模式。融合残差块包含残差连接,这有助于缓解梯度消失问题。通过将块的输入直接添加到其输出中,这些连接在反向传播期间促进更好的梯度流动,从而实现更深层次、更稳定的训练。使用了广泛的内镜图像来评估所提出的模型,准确描绘了各种疾病情况。

结论

所提出的方法开发了一种轻量级模型,通过结合特征融合、残差学习和自归一化等先进技术,正确识别胃肠道(GI)疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验