Suppr超能文献

基于组织病理学图像的肺癌和结肠癌早期多分类高级深度学习融合模型

Advanced Deep Learning Fusion Model for Early Multi-Classification of Lung and Colon Cancer Using Histopathological Images.

作者信息

Abd El-Aziz A A, Mahmood Mahmood A, Abd El-Ghany Sameh

机构信息

Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia.

出版信息

Diagnostics (Basel). 2024 Oct 12;14(20):2274. doi: 10.3390/diagnostics14202274.

Abstract

BACKGROUND

In recent years, the healthcare field has experienced significant advancements. New diagnostic techniques, treatments, and insights into the causes of various diseases have emerged. Despite these progressions, cancer remains a major concern. It is a widespread illness affecting individuals of all ages and leads to one out of every six deaths. Lung and colon cancer alone account for nearly two million fatalities. Though it is rare for lung and colon cancers to co-occur, the spread of cancer cells between these two areas-known as metastasis-is notably high. Early detection of cancer greatly increases survival rates. Currently, histopathological image (HI) diagnosis and appropriate treatment are key methods for reducing cancer mortality and enhancing survival rates. Digital image processing (DIP) and deep learning (DL) algorithms can be employed to analyze the HIs of five different types of lung and colon tissues.

METHODS

Therefore, this paper proposes a refined DL model that integrates feature fusion for the multi-classification of lung and colon cancers. The proposed model incorporates three DL architectures: ResNet-101V2, NASNetMobile, and EfficientNet-B0. Each model has limitations concerning variations in the shape and texture of input images. To address this, the proposed model utilizes a concatenate layer to merge the pre-trained individual feature vectors from ResNet-101V2, NASNetMobile, and EfficientNet-B0 into a single feature vector, which is then fine-tuned. As a result, the proposed DL model achieves high success in multi-classification by leveraging the strengths of all three models to enhance overall accuracy. This model aims to assist pathologists in the early detection of lung and colon cancer with reduced effort, time, and cost. The proposed DL model was evaluated using the LC25000 dataset, which contains colon and lung HIs. The dataset was pre-processed using resizing and normalization techniques.

RESULTS

The model was tested and compared with recent DL models, achieving impressive results: 99.8% for precision, 99.8% for recall, 99.8% for F1-score, 99.96% for specificity, and 99.94% for accuracy.

CONCLUSIONS

Thus, the proposed DL model demonstrates exceptional performance across all classification categories.

摘要

背景

近年来,医疗保健领域取得了重大进展。新的诊断技术、治疗方法以及对各种疾病病因的深入了解不断涌现。尽管取得了这些进展,但癌症仍然是一个主要问题。它是一种广泛存在的疾病,影响着各个年龄段的人群,每六例死亡中就有一例是由癌症导致的。仅肺癌和结肠癌就导致了近200万人死亡。虽然肺癌和结肠癌同时发生的情况很少见,但癌细胞在这两个部位之间的扩散——即转移——却非常高。癌症的早期检测能大大提高生存率。目前,组织病理学图像(HI)诊断和适当的治疗是降低癌症死亡率和提高生存率的关键方法。数字图像处理(DIP)和深度学习(DL)算法可用于分析五种不同类型的肺和结肠组织的HI。

方法

因此,本文提出了一种经过改进的DL模型,该模型集成了特征融合,用于肺癌和结肠癌的多分类。所提出的模型包含三种DL架构:ResNet - 101V2、NASNetMobile和EfficientNet - B0。每个模型在处理输入图像的形状和纹理变化方面都存在局限性。为了解决这个问题,所提出的模型利用一个拼接层将来自ResNet - 101V2、NASNetMobile和EfficientNet - B0的预训练个体特征向量合并为一个单一的特征向量,然后进行微调。结果,所提出的DL模型通过利用这三个模型的优势来提高整体准确率,在多分类方面取得了很高的成功率。该模型旨在帮助病理学家以更少的精力、时间和成本早期检测肺癌和结肠癌。所提出的DL模型使用包含结肠和肺HI的LC25000数据集进行评估。该数据集使用调整大小和归一化技术进行了预处理。

结果

该模型经过测试,并与近期的DL模型进行了比较,取得了令人印象深刻的结果:精确率为99.8%,召回率为99.8%,F1分数为99.8%,特异性为99.96%,准确率为99.94%。

结论

因此,所提出的DL模型在所有分类类别中都表现出了卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f8/11506260/a7aa14153bbb/diagnostics-14-02274-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验