Ko Jaepil, Kang MinHye, Jun Young Joon
Kumoh National Institute of Technology, Gumi, South Korea.
Uijeongbu Eulji Medical Center, Otorhinolaryngology-head and Neck Surgery, Eulji University, Uijeongbu-si, South Korea.
Sci Rep. 2025 Jul 8;15(1):24341. doi: 10.1038/s41598-025-10087-x.
Allergic rhinitis typically has edematous and pale turbinates or erythematous and inflamed turbinates. While traditional approaches include using skin prick tests (SPT) to determine the presence of AR, It is often not related to actual symptoms, and it is an invasive test. We use deep learning to analyze nasal endoscopy images to investigate a quantitative method for diagnosing allergic rhinitis. Traditional machine learning-based diagnostic techniques have relied on structured clinical datasets featuring statistical data such as demographic characteristics, symptom severity, and clinical test results. In contrast, we propose a novel approach to use endoscopy image data to analyze the color distribution in the inferior turbinate region of patients with allergic rhinitis using the CIE-Lab color space and extract the adaptive histogram features that are used to explore and find suitable feature extraction methods and deep learning model architectures. Our proposed model achieves a promising diagnostic accuracy of 90.80% for images exhibiting AR symptoms. Future research will expand the dataset to include a broader spectrum of symptomatic and asymptomatic images to enhance model robustness and investigate the potential of optical analysis as a non-invasive diagnostic method for AR. This study introduced a novel approach to diagnosing allergic rhinitis using nasal endoscopy images. Our approach analyzed the color distribution of the inferior turbinates within the LAB color space, extracted important features from endoscopy images using both CNN feature extraction and histograms, and performed classification through SVM and fully connected classifiers.
变应性鼻炎通常表现为鼻甲水肿、苍白或鼻甲红斑、炎症。虽然传统方法包括使用皮肤点刺试验(SPT)来确定变应性鼻炎的存在,但它往往与实际症状无关,且是一种侵入性检查。我们使用深度学习分析鼻内镜图像,以研究诊断变应性鼻炎的定量方法。传统的基于机器学习的诊断技术依赖于结构化临床数据集,这些数据集具有人口统计学特征、症状严重程度和临床检查结果等统计数据。相比之下,我们提出了一种新方法,利用内镜图像数据,在CIE-Lab颜色空间中分析变应性鼻炎患者下鼻甲区域的颜色分布,并提取自适应直方图特征,用于探索和找到合适的特征提取方法及深度学习模型架构。我们提出的模型对表现出变应性鼻炎症状的图像实现了90.80%的良好诊断准确率。未来的研究将扩大数据集,纳入更广泛的有症状和无症状图像,以提高模型的鲁棒性,并研究光学分析作为变应性鼻炎非侵入性诊断方法的潜力。本研究介绍了一种利用鼻内镜图像诊断变应性鼻炎的新方法。我们的方法在LAB颜色空间中分析下鼻甲的颜色分布,使用卷积神经网络(CNN)特征提取和直方图从内镜图像中提取重要特征,并通过支持向量机(SVM)和全连接分类器进行分类。