Truong Pham T, Hieu Nguyen N, Nguyen Hieu V, Nguyen Cuong Q, Linh Tran P T, Phuc Huynh V, Nguyen Chuong V
Faculty of Physics, University of Education, Hue University, Hue 530000, Vietnam.
Division of Physics, School of Education, Dong Thap University, Dong Thap, 870000, Viet Nam.
Nanoscale. 2025 Jul 24;17(29):17182-17192. doi: 10.1039/d5nr01589h.
Metal-semiconductor heterostructures are pivotal in modern electronics, offering a crucial interface that governs carrier transport and significantly impacts device performance and functionality. In this study, we systematically investigate the structural, electronic, mechanical, and contact properties of 1T- and 2H-type TaB/MoSSe heterostructures using first-principles calculations. Our results confirm that both heterostructures are energetically, dynamically, and mechanically stable, with the TaB and MoSSe layers held together by van der Waals (vdW) forces, ensuring stability and potential exfoliation in future experiments. The TaB/MoSSe heterostructures exhibit exceptional mechanical robustness, making them highly suitable for integration into solid-state devices. Furthermore, all stacking configurations of the 1T(2H)-TaB/MoSSe heterostructures form n-type Schottky contacts, which can be effectively tuned by altering the stacking arrangements. Our findings indicate that, regardless of whether the metallic TaB layer is stacked on the S or Se side of the MoSSe monolayer, electron conduction dominates charge transport in the heterostructures. This inherent n-type contact formation is advantageous for applications requiring efficient electron transport, such as high-speed electronic and optoelectronic devices. Notably, the TaB/MoSSe heterostructures demonstrate low contact resistance, making them promising candidates for next-generation electronic devices. These findings provide critical insights into the fundamental properties of TaB/MoSSe heterostructures, underscoring their potential for application in next-generation electronic devices.
金属-半导体异质结构在现代电子学中至关重要,它提供了一个关键界面,该界面控制载流子传输,并对器件性能和功能产生重大影响。在本研究中,我们使用第一性原理计算系统地研究了1T型和2H型TaB/MoSSe异质结构的结构、电子、力学和接触特性。我们的结果证实,这两种异质结构在能量、动力学和力学上都是稳定的,TaB层和MoSSe层通过范德华(vdW)力结合在一起,确保了稳定性以及在未来实验中潜在的剥离可能性。TaB/MoSSe异质结构表现出出色的机械稳健性,使其非常适合集成到固态器件中。此外,1T(2H)-TaB/MoSSe异质结构的所有堆叠构型都形成n型肖特基接触,可通过改变堆叠排列进行有效调节。我们的研究结果表明,无论金属TaB层是堆叠在MoSSe单层的S侧还是Se侧,电子传导在异质结构的电荷传输中都占主导地位。这种固有的n型接触形成对于需要高效电子传输的应用(如高速电子和光电器件)是有利的。值得注意的是,TaB/MoSSe异质结构表现出低接触电阻,使其成为下一代电子器件的有前途的候选者。这些发现为TaB/MoSSe异质结构的基本特性提供了关键见解,突出了它们在下一代电子器件中的应用潜力。