Suppr超能文献

通过CoVerage进行的计算机基因组监测可预测并表征感兴趣的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体。

In silico genomic surveillance by CoVerage predicts and characterizes SARS-CoV-2 variants of interest.

作者信息

Norwood Katrina, Deng Zhi-Luo, Reimering Susanne, Robertson Gary, Foroughmand-Araabi Mohammad-Hadi, Goliaei Sama, Hölzer Martin, Klawonn Frank, McHardy Alice C

机构信息

Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany.

Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

出版信息

Nat Commun. 2025 Jul 8;16(1):6281. doi: 10.1038/s41467-025-60231-4.

Abstract

Rapidly evolving viral pathogens such as SARS-CoV-2 continuously accumulate amino acid changes, some of which affect transmissibility, virulence or improve the virus' ability to escape host immunity. Since the beginning of the SARS-CoV-2 pandemic, multiple lineages with concerning phenotypic alterations, so-called Variants of Concern (VOCs), have emerged and risen to predominance. To optimize public health management and ensure the continued efficacy of vaccines, the early detection of such variants is essential. Therefore, large-scale viral genomic surveillance programs have been initiated worldwide, with data being deposited in public repositories in a timely manner. However, technologies for their continuous interpretation are lacking. Here, we describe the CoVerage system ( www.sarscoverage.org ) for viral genomic surveillance, which continuously predicts and characterizes emerging potential Variants of Interest (pVOIs) from country-wise lineage frequency dynamics, together with their antigenic and evolutionary alterations utilizing the GISAID viral genome resource. In a comprehensive assessment of VOIs, VUMs, and VOCs, we demonstrate how CoVerage can be used to swiftly identify and characterize such variants, with a lead time of almost three months relative to their WHO designation. CoVerage can facilitate the timely identification and assessment of future SARS-CoV-2 variants relevant for public health.

摘要

像严重急性呼吸综合征冠状病毒2(SARS-CoV-2)这样快速演变的病毒病原体不断积累氨基酸变化,其中一些变化会影响传播性、毒力或提高病毒逃避宿主免疫的能力。自SARS-CoV-2大流行开始以来,出现了多个具有令人担忧的表型改变的谱系,即所谓的关注变体(VOCs),并占据了主导地位。为了优化公共卫生管理并确保疫苗的持续有效性,尽早检测出此类变体至关重要。因此,全球范围内已启动大规模病毒基因组监测计划,并及时将数据存入公共数据库。然而,目前缺乏对这些数据进行持续解读的技术。在此,我们描述了用于病毒基因组监测的CoVerage系统(www.sarscoverage.org),该系统利用全球共享流感数据倡议组织(GISAID)的病毒基因组资源,根据各国谱系频率动态,以及它们的抗原性和进化变化,持续预测并表征新出现的潜在关注变体(pVOIs)。在对VOIs、VUMs和VOCs的全面评估中,我们展示了CoVerage如何用于快速识别和表征此类变体,相对于世界卫生组织(WHO)的指定,其提前期近三个月。CoVerage有助于及时识别和评估与公共卫生相关的未来SARS-CoV-2变体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/233d/12238648/80bb27dc5bb4/41467_2025_60231_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验