Suppr超能文献

次优肺活量测定法的深度学习以预测呼吸结局和死亡率

Deep Learning of Suboptimal Spirometry to Predict Respiratory Outcomes and Mortality.

作者信息

Hill Davin, Torop Max, Masoomi Aria, Castaldi Peter J, Silverman Edwin K, Bodduluri Sandeep, Bhatt Surya P, Yun Taedong, McLean Cory Y, Hormozdiari Farhad, Dy Jennifer, Cho Michael H, Hobbs Brian D

机构信息

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA.

Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Res Sq. 2025 Jun 30:rs.3.rs-6296752. doi: 10.21203/rs.3.rs-6296752/v1.

Abstract

IMPORTANCE

Obtaining spirometry requires repeated testing and using the maximal values based on quality control criteria. Whether the suboptimal efforts are useful for the prediction of respiratory outcomes is not clear.

OBJECTIVE

To determine whether a machine learning model could predict respiratory outcomes and mortality based on suboptimal spirometry.

DESIGN

Observational cohorts (UK Biobank and COPDGene).

SETTING

Multi-center; population, and disease-enriched.

PARTICIPANTS

UK aged 40-69; US aged 45-80, >10 pack-years smoking, without respiratory diseases other than COPD or asthma.

EXPOSURES

Raw spirograms (volume-time).

MAIN OUTCOMES AND MEASURES

To create a combined representation of lung function we implemented a contrastive learning approach, gram-based ontrastive earning ramework (Spiro-CLF), which utilized all recorded volume-time curves per participant and applied different transformations (e.g. flow-volume, flow-time). We defined "maximal" efforts as those passing quality control (QC) with the maximum FVC; all other efforts, including submaximal and QC-failing efforts, were defined as "suboptimal". We trained the Spiro-CLF model using both maximal and suboptimal efforts from the UK Biobank. We tested the model in a held-out 20% testing UK Biobank subset and COPDGene, on 1) binary predictions of FEV /FVC <0.7, and FEV Percent Predicted (FEV PP) <80%, 2) Cox regression for all-cause mortality, and 3) prediction of respiratory phenotypes.

RESULTS

We trained Spiro-CLF on 940,705 volume-time curves from 352,684 UKB participants with 2-3 spirometry efforts per individual (66.7% with 3 efforts) and at least one QC-passing spirometry effort. Of all spirometry efforts, 61.6% were suboptimal (37.5% submaximal and 24.1% QC-failing). In the UK Biobank, Spiro-CLF using QC-failing and submaximal efforts predicted FEV /FVC < 0.7 with an Area under the Receiver Operating Characteristics (AUROC) of 0.956, mortality with a concordance index of 0.647, and asthma with a 9-42% improvement versus baseline models. In COPDGene (n=10,110 participants), adding QC-passing, submaximal efforts did not improve the prediction of lung function or mortality; however, Spiro-CLF representations predicted asthma and respiratory phenotypes (joint test P ≤ × ).

CONCLUSIONS AND RELEVANCE

A machine-learning model can predict respiratory phenotypes using suboptimal spirometry; results from all spirometry efforts may contain valuable data. Additional studies are required to determine performance and utility in specific clinical scenarios.

摘要

重要性

进行肺功能测定需要重复测试并根据质量控制标准采用最大值。次优努力对于预测呼吸结局是否有用尚不清楚。

目的

确定机器学习模型是否可以基于次优肺功能测定预测呼吸结局和死亡率。

设计

观察性队列研究(英国生物银行和慢性阻塞性肺疾病基因研究(COPDGene))。

设置

多中心;人群和疾病富集。

参与者

英国40 - 69岁人群;美国45 - 80岁人群,吸烟史超过10包年,除慢性阻塞性肺疾病(COPD)或哮喘外无其他呼吸系统疾病。

暴露因素

原始肺量计图(容积 - 时间)。

主要结局和测量指标

为创建肺功能的综合表示,我们实施了一种对比学习方法,即基于克的对比学习框架(Spiro - CLF),该方法利用每个参与者记录的所有容积 - 时间曲线并应用不同的变换(例如流量 - 容积、流量 - 时间)。我们将“最大”努力定义为通过质量控制(QC)且用力肺活量(FVC)最大的努力;所有其他努力,包括次最大努力和未通过QC的努力,都定义为“次优”。我们使用来自英国生物银行的最大和次优努力训练Spiro - CLF模型。我们在留出的20%的英国生物银行测试子集和COPDGene中测试该模型,用于:1)FEV₁/FVC < 0.7和第一秒用力呼气容积占预计值百分比(FEV₁PP)< 80%的二元预测,2)全因死亡率的Cox回归,以及3)呼吸表型的预测。

结果

我们在来自352,684名英国生物银行参与者的940,705条容积 - 时间曲线上训练Spiro - CLF,每人进行2 - 3次肺功能测定努力(66.7%的人进行3次努力)且至少有一次通过QC的肺功能测定努力。在所有肺功能测定努力中,61.6%是次优的(37.5%为次最大努力,24.1%为未通过QC的努力)。在英国生物银行中,使用未通过QC和次最大努力的Spiro - CLF预测FEV₁/FVC < 0.7时,受试者工作特征曲线下面积(AUROC)为0.956,预测死亡率时一致性指数为0.647,预测哮喘时与基线模型相比有9% - 42%的改善。在COPDGene(n = 10,110名参与者)中,添加通过QC的次最大努力并未改善肺功能或死亡率的预测;然而,Spiro - CLF表示预测了哮喘和呼吸表型(联合检验P ≤ [具体数值])。

结论与相关性

机器学习模型可以使用次优肺功能测定预测呼吸表型;所有肺功能测定努力的结果可能包含有价值的数据。需要进一步研究以确定其在特定临床场景中的性能和效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/736e/12236919/d4de3062c398/nihpp-rs6296752v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验