Suppr超能文献

一种基于深度神经网络的用于估计下肢关节力矩的多伪传感器融合方法。

A multi-pseudo-sensor fusion approach to estimating the lower limb joint moments based on deep neural network.

作者信息

Yu Xisheng, Pei Zeguang

机构信息

College of Mechanical Engineering, Donghua University, Shanghai, 201620, China.

出版信息

Med Biol Eng Comput. 2025 Jul 9. doi: 10.1007/s11517-025-03406-x.

Abstract

Reliable feedback of gait variables, such as joint moments, is critical for designing controllers of intelligent assistive devices that can assist the wearer outdoors. To estimate lower extremity joint moments quickly and accurately outside the laboratory, a novel multimodal motion intent recognition system by fusing traditional deep learning models is proposed in this paper. The developed estimation method uses the joint kinematics data and individual feature parameters to estimate lower limb joint moments in the sagittal plane under different motion conditions: walking, running, and stair ascent and descent. Specifically, seven deep learning models that use combination of convolutional neural network, recurrent neural networks and attention mechanisms as the unit models of the framework are designed. To improve the performance of the unit models, a data augmentation module is designed in the system. Using those unit models, a novel framework, DeepMPSF-Net, which treats the output of each unit model as a pseudo-sensor observation and utilizes variable weight fusion methods to improve classification accuracy and kinetics estimation performance, is proposed. The results show that the augmented DeepMPSF-Net can accurately identify the locomotion, and the estimation performance (PCC) of joint moments is improved to 0.952 (walking), 0.988 (running), 0.925 (stair ascent), and 0.921 (stair descent), respectively. It also suggests that the estimation system is expected to contribute to the development of intelligent assistive devices for the lower limbs.

摘要

步态变量(如关节力矩)的可靠反馈对于设计能够在户外协助穿戴者的智能辅助设备的控制器至关重要。为了在实验室外快速准确地估计下肢关节力矩,本文提出了一种通过融合传统深度学习模型的新型多模态运动意图识别系统。所开发的估计方法使用关节运动学数据和个体特征参数来估计在不同运动条件下(行走、跑步以及上下楼梯)矢状面内的下肢关节力矩。具体而言,设计了七个深度学习模型,这些模型使用卷积神经网络、循环神经网络和注意力机制的组合作为框架的单元模型。为了提高单元模型的性能,在系统中设计了一个数据增强模块。利用这些单元模型,提出了一种新颖的框架DeepMPSF-Net,该框架将每个单元模型的输出视为伪传感器观测值,并利用可变权重融合方法来提高分类准确性和动力学估计性能。结果表明,增强后的DeepMPSF-Net能够准确识别运动,并且关节力矩估计性能(PCC)分别提高到0.952(行走)、0.988(跑步)、0.925(上楼梯)以及0.921(下楼梯)。这也表明该估计系统有望为下肢智能辅助设备的发展做出贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验