Moon YoungJin, Dong Zheng, Lee Sang Ki, Yun Hwi-Yeol, Song JuWon, Shin Min Ju, Im DuBin, Xu JiaHao, Wang XuanRu
Department of Sport Science, Chungnam National University, Daejeon, Republic of Korea.
College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
Sci Rep. 2025 Jul 9;15(1):24658. doi: 10.1038/s41598-025-08304-8.
Bone mineral content (BMC) is a crucial indicator of skeletal health, influencing growth and development in younger individuals and fracture risk in older adults. This study aimed to evaluate the consistency of bioelectrical impedance analysis (BIA) compared with dual-energy X-ray absorptiometry (DXA) for assessing BMC in healthy populations. Additionally, it explored the potential to improve prediction accuracy by optimizing regression equations tailored to specific age groups, providing valuable insights for skeletal health monitoring and personalized healthcare. A total of 302 healthy Korean participants (148 men and 154 women; mean ages 24.87 ± 12.43 and 34.98 ± 22.24 years, respectively) underwent body composition measurements via BIA and DXA. Basic variables such as age, height, and weight, along with a range of BIA parameters, were utilized to refine predictive models for BMC. Age-specific regression models significantly enhanced prediction accuracy, with the adjusted R reaching up to 0.90. The mean difference between the optimized BIA model and DXA was - 0.02 kg (p = 0.287), indicating negligible paired differences. In contrast, existing BIA equations exhibited substantial bias (mean difference up to 0.46 kg, p < 0.001). Age-related factors, particularly in older adults, likely contributed to the decline in predictive performance, with extracellular water (ECW) and total body water (TBW) identified as key variables in this subgroup. When using subject-specific equations, BIA demonstrated superior predictive capability for BMC compared to generalized equations. However, limitations include reliance on a single BIA device, lack of external validation, and an unbalanced age distribution, which may affect the generalizability of the findings. While DXA remains the gold standard, integrating BIA with optimized equations offers a portable and cost-effective alternative for skeletal health assessment and long-term monitoring in community settings. This study underscores the importance of developing BMC models tailored to specific populations to advance the precision and applicability of BIA methodologies across diverse age groups and demographic cohorts.
骨矿物质含量(BMC)是骨骼健康的关键指标,影响着年轻人的生长发育以及老年人的骨折风险。本研究旨在评估生物电阻抗分析(BIA)与双能X线吸收法(DXA)在评估健康人群BMC方面的一致性。此外,该研究还探索了通过优化针对特定年龄组的回归方程来提高预测准确性的潜力,为骨骼健康监测和个性化医疗提供了有价值的见解。共有302名健康的韩国参与者(148名男性和154名女性;平均年龄分别为24.87±12.43岁和34.98±22.24岁)接受了通过BIA和DXA进行的身体成分测量。利用年龄、身高和体重等基本变量以及一系列BIA参数来完善BMC的预测模型。特定年龄的回归模型显著提高了预测准确性,调整后的R值高达0.90。优化后的BIA模型与DXA之间的平均差异为-0.02千克(p=0.287),表明配对差异可忽略不计。相比之下,现有的BIA方程表现出较大偏差(平均差异高达0.46千克,p<0.001)。与年龄相关的因素,尤其是在老年人中,可能导致预测性能下降,细胞外液(ECW)和总体液(TBW)被确定为该亚组中的关键变量。当使用针对个体的方程时,与通用方程相比,BIA对BMC表现出更好的预测能力。然而,局限性包括依赖单一的BIA设备、缺乏外部验证以及年龄分布不均衡,这可能会影响研究结果的普遍性。虽然DXA仍然是金标准,但将BIA与优化后的方程相结合,为社区环境中的骨骼健康评估和长期监测提供了一种便携且经济高效的替代方法。本研究强调了开发针对特定人群的BMC模型对于提高BIA方法在不同年龄组和人口队列中的精度和适用性的重要性。