Suppr超能文献

MolSearch:基于搜索的多目标分子生成与性质优化

MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization.

作者信息

Sun Mengying, Wang Huijun, Xing Jing, Chen Bin, Meng Han, Zhou Jiayu

机构信息

Michigan State University, East Lansing, Michigan, USA.

Agios Pharmaceuticals, Cambridge, Massachusetts, USA.

出版信息

KDD. 2022 Aug;2022:4724-4732. doi: 10.1145/3534678.3542676. Epub 2022 Aug 14.

Abstract

Leveraging computational methods to generate small molecules with desired properties has been an active research area in the drug discovery field. Towards real-world applications, however, efficient generation of molecules that satisfy property requirements simultaneously remains a key challenge. In this paper, we tackle this challenge using a search-based approach and propose a simple yet effective framework called MolSearch for multi-objective molecular generation (optimization). We show that given proper design and sufficient information, search-based methods can achieve performance comparable or even better than deep learning methods while being computationally efficient. Such efficiency enables massive exploration of chemical space given constrained computational resources. In particular, MolSearch starts with existing molecules and uses a two-stage search strategy to gradually modify them into new ones, based on transformation rules derived systematically and exhaustively from large compound libraries. We evaluate MolSearch in multiple benchmark generation settings and demonstrate its effectiveness and efficiency.

摘要

利用计算方法来生成具有所需特性的小分子一直是药物发现领域的一个活跃研究领域。然而,对于实际应用而言,同时高效生成满足特性要求的分子仍然是一个关键挑战。在本文中,我们使用基于搜索的方法来应对这一挑战,并提出了一个名为MolSearch的简单而有效的框架,用于多目标分子生成(优化)。我们表明,在给定适当设计和足够信息的情况下,基于搜索的方法可以实现与深度学习方法相当甚至更好的性能,同时计算效率更高。这种效率使得在有限的计算资源下能够对化学空间进行大规模探索。特别是,MolSearch从现有分子开始,并使用两阶段搜索策略,根据从大型化合物库中系统且详尽推导出来的转化规则,将它们逐步修改为新分子。我们在多个基准生成设置中对MolSearch进行了评估,并证明了其有效性和效率。

相似文献

1
MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization.
KDD. 2022 Aug;2022:4724-4732. doi: 10.1145/3534678.3542676. Epub 2022 Aug 14.
3
Modern machine learning for tackling inverse problems in chemistry: molecular design to realization.
Chem Commun (Camb). 2022 Apr 28;58(35):5316-5331. doi: 10.1039/d1cc07035e.
4
VGAE-MCTS: A New Molecular Generative Model Combining the Variational Graph Auto-Encoder and Monte Carlo Tree Search.
J Chem Inf Model. 2023 Dec 11;63(23):7392-7400. doi: 10.1021/acs.jcim.3c01220. Epub 2023 Nov 22.
5
Multi-objective molecular generation via clustered Pareto-based reinforcement learning.
Neural Netw. 2024 Nov;179:106596. doi: 10.1016/j.neunet.2024.106596. Epub 2024 Aug 6.
6
Enabling target-aware molecule generation to follow multi objectives with Pareto MCTS.
Commun Biol. 2024 Sep 2;7(1):1074. doi: 10.1038/s42003-024-06746-w.
7
DrugSynthMC: An Atom-Based Generation of Drug-like Molecules with Monte Carlo Search.
J Chem Inf Model. 2024 Sep 23;64(18):7097-7107. doi: 10.1021/acs.jcim.4c01451. Epub 2024 Sep 9.
8
FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery.
Proc SIAM Int Conf Data Min. 2022;2022:720-728. doi: 10.1137/1.9781611977172.81.
9
Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
Acc Chem Res. 2021 Feb 2;54(3):532-545. doi: 10.1021/acs.accounts.0c00686. Epub 2021 Jan 22.
10
COMA: efficient structure-constrained molecular generation using contractive and margin losses.
J Cheminform. 2023 Jan 19;15(1):8. doi: 10.1186/s13321-023-00679-y.

引用本文的文献

4
Enabling target-aware molecule generation to follow multi objectives with Pareto MCTS.
Commun Biol. 2024 Sep 2;7(1):1074. doi: 10.1038/s42003-024-06746-w.
5
Adaptive Space Search-based Molecular Evolution Optimization Algorithm.
Bioinformatics. 2024 Jul 23;40(7). doi: 10.1093/bioinformatics/btae446.
6
Evolutionary Multiobjective Molecule Optimization in an Implicit Chemical Space.
J Chem Inf Model. 2024 Jul 8;64(13):5161-5174. doi: 10.1021/acs.jcim.4c00031. Epub 2024 Jun 13.
7
Magicmol: a light-weighted pipeline for drug-like molecule evolution and quick chemical space exploration.
BMC Bioinformatics. 2023 Apr 26;24(1):173. doi: 10.1186/s12859-023-05286-0.

本文引用的文献

1
The Playbooks of Medicinal Chemistry Design Moves.
J Chem Inf Model. 2021 Feb 22;61(2):729-742. doi: 10.1021/acs.jcim.0c01143. Epub 2021 Feb 1.
2
Mol-CycleGAN: a generative model for molecular optimization.
J Cheminform. 2020 Jan 8;12(1):2. doi: 10.1186/s13321-019-0404-1.
3
Optimization of Molecules via Deep Reinforcement Learning.
Sci Rep. 2019 Jul 24;9(1):10752. doi: 10.1038/s41598-019-47148-x.
4
A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space.
Chem Sci. 2019 Feb 11;10(12):3567-3572. doi: 10.1039/c8sc05372c. eCollection 2019 Mar 28.
5
ChEMBL: towards direct deposition of bioassay data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940. doi: 10.1093/nar/gky1075.
6
7
Adversarial Threshold Neural Computer for Molecular de Novo Design.
Mol Pharm. 2018 Oct 1;15(10):4386-4397. doi: 10.1021/acs.molpharmaceut.7b01137. Epub 2018 Mar 30.
8
Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules.
ACS Cent Sci. 2018 Feb 28;4(2):268-276. doi: 10.1021/acscentsci.7b00572. Epub 2018 Jan 12.
9
ChemTS: an efficient python library for molecular generation.
Sci Technol Adv Mater. 2017 Nov 24;18(1):972-976. doi: 10.1080/14686996.2017.1401424. eCollection 2017.
10
Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks.
ACS Cent Sci. 2018 Jan 24;4(1):120-131. doi: 10.1021/acscentsci.7b00512. Epub 2017 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验