Sun Mengying, Wang Huijun, Xing Jing, Chen Bin, Meng Han, Zhou Jiayu
Michigan State University, East Lansing, Michigan, USA.
Agios Pharmaceuticals, Cambridge, Massachusetts, USA.
KDD. 2022 Aug;2022:4724-4732. doi: 10.1145/3534678.3542676. Epub 2022 Aug 14.
Leveraging computational methods to generate small molecules with desired properties has been an active research area in the drug discovery field. Towards real-world applications, however, efficient generation of molecules that satisfy property requirements simultaneously remains a key challenge. In this paper, we tackle this challenge using a search-based approach and propose a simple yet effective framework called MolSearch for multi-objective molecular generation (optimization). We show that given proper design and sufficient information, search-based methods can achieve performance comparable or even better than deep learning methods while being computationally efficient. Such efficiency enables massive exploration of chemical space given constrained computational resources. In particular, MolSearch starts with existing molecules and uses a two-stage search strategy to gradually modify them into new ones, based on transformation rules derived systematically and exhaustively from large compound libraries. We evaluate MolSearch in multiple benchmark generation settings and demonstrate its effectiveness and efficiency.
利用计算方法来生成具有所需特性的小分子一直是药物发现领域的一个活跃研究领域。然而,对于实际应用而言,同时高效生成满足特性要求的分子仍然是一个关键挑战。在本文中,我们使用基于搜索的方法来应对这一挑战,并提出了一个名为MolSearch的简单而有效的框架,用于多目标分子生成(优化)。我们表明,在给定适当设计和足够信息的情况下,基于搜索的方法可以实现与深度学习方法相当甚至更好的性能,同时计算效率更高。这种效率使得在有限的计算资源下能够对化学空间进行大规模探索。特别是,MolSearch从现有分子开始,并使用两阶段搜索策略,根据从大型化合物库中系统且详尽推导出来的转化规则,将它们逐步修改为新分子。我们在多个基准生成设置中对MolSearch进行了评估,并证明了其有效性和效率。