Keenan Michael R, Trindade Gustavo F, Pirkl Alexander, Newell Clare L, Jin Yuhong, Aizikov Konstantin, Dannhorn Andreas, Zhang Junting, Matjačić Lidija, Arlinghaus Henrik, Eyres Anya, Havelund Rasmus, Goodwin Richard J A, Takats Zoltan, Bunch Josephine, Gould Alex P, Makarov Alexander, Gilmore Ian S
Independent, Georgetown, TX, USA.
National Physical Laboratory, NiCE-MSI, Teddington, UK.
Nat Commun. 2025 Jul 10;16(1):6398. doi: 10.1038/s41467-025-61542-2.
Orbitrap mass spectrometry is widely used in the life-sciences. However, like all mass spectrometers, non-uniform (heteroscedastic) noise introduces bias in multivariate analysis complicating data interpretation. Here, we study the noise structure of an Orbitrap mass analyser integrated into a secondary ion mass spectrometer (OrbiSIMS). Using a stable primary ion beam to provide a well-controlled source of ions from a silver sample, we find that noise has three characteristic regimes: at low signals the Orbitrap detector noise and a censoring algorithm dominates; at intermediate signals counting noise specific to the ion emission process is most significant; and at high signals additional sources of measurement variation become important. Using this understanding, we developed a generative model for Orbitrap data that accounts for the noise distribution and introduce a scaling method, termed WSoR, to reduce the effects of noise bias in multivariate analysis. We compare WSoR performance with no-scaling and existing scaling methods for three biological imaging data sets including drosophila central nervous system, mouse testis and a desorption electrospray ionisation (DESI) image of a rat liver. WSoR consistently performed best at discriminating chemical information from noise. The performance of the other methods varied on a case-by-case basis, complicating the analysis.
轨道阱质谱在生命科学领域应用广泛。然而,与所有质谱仪一样,非均匀(异方差)噪声会在多变量分析中引入偏差,使数据解读变得复杂。在此,我们研究了集成在二次离子质谱仪(OrbiSIMS)中的轨道阱质量分析器的噪声结构。使用稳定的一次离子束从银样品中提供可控的离子源,我们发现噪声有三种特征状态:在低信号时,轨道阱检测器噪声和一种审查算法占主导;在中等信号时,离子发射过程特有的计数噪声最为显著;在高信号时,其他测量变化源变得重要。基于这一认识,我们开发了一种用于轨道阱数据的生成模型,该模型考虑了噪声分布,并引入了一种称为WSoR的缩放方法,以减少多变量分析中噪声偏差的影响。我们将WSoR的性能与无缩放和现有的缩放方法在三个生物成像数据集上进行了比较,这三个数据集包括果蝇中枢神经系统、小鼠睾丸以及大鼠肝脏的解吸电喷雾电离(DESI)图像。在从噪声中区分化学信息方面,WSoR始终表现最佳。其他方法的性能因具体情况而异,使分析变得复杂。