Suppr超能文献

人工智能时代的空间代谢组学与成像质谱分析

Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence.

作者信息

Alexandrov Theodore

机构信息

Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA.

出版信息

Annu Rev Biomed Data Sci. 2020 Jul;3:61-87. doi: 10.1146/annurev-biodatasci-011420-031537. Epub 2020 Apr 13.

Abstract

Spatial metabolomics is an emerging field of omics research that has enabled localizing metabolites, lipids, and drugs in tissue sections, a feat considered impossible just two decades ago. Spatial metabolomics and its enabling technology-imaging mass spectrometry-generate big hyper-spectral imaging data that have motivated the development of tailored computational methods at the intersection of computational metabolomics and image analysis. Experimental and computational developments have recently opened doors to applications of spatial metabolomics in life sciences and biomedicine. At the same time, these advances have coincided with a rapid evolution in machine learning, deep learning, and artificial intelligence, which are transforming our everyday life and promise to revolutionize biology and healthcare. Here, we introduce spatial metabolomics through the eyes of a computational scientist, review the outstanding challenges, provide a look into the future, and discuss opportunities granted by the ongoing convergence of human and artificial intelligence.

摘要

空间代谢组学是组学研究中一个新兴的领域,它能够在组织切片中定位代谢物、脂质和药物,而就在二十年前,这一壮举还被认为是不可能实现的。空间代谢组学及其支持技术——成像质谱法——生成了大量的高光谱成像数据,这推动了在计算代谢组学和图像分析交叉领域定制计算方法的发展。实验和计算方面的进展最近为空间代谢组学在生命科学和生物医学中的应用打开了大门。与此同时,这些进展恰逢机器学习、深度学习和人工智能的快速发展,它们正在改变我们的日常生活,并有望给生物学和医疗保健带来变革。在这里,我们从计算科学家的视角介绍空间代谢组学,回顾突出的挑战,展望未来,并讨论人类与人工智能不断融合所带来的机遇。

相似文献

1
Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence.
Annu Rev Biomed Data Sci. 2020 Jul;3:61-87. doi: 10.1146/annurev-biodatasci-011420-031537. Epub 2020 Apr 13.
2
Artificial Intelligence in Metabolomics: A Current Review.
Trends Analyt Chem. 2024 Sep;178. doi: 10.1016/j.trac.2024.117852. Epub 2024 Jul 3.
4
Artificial intelligence in the diagnosis and management of arrhythmias.
Eur Heart J. 2021 Oct 7;42(38):3904-3916. doi: 10.1093/eurheartj/ehab544.
5
Enablers and challenges of spatial omics, a melting pot of technologies.
Mol Syst Biol. 2023 Nov 9;19(11):e10571. doi: 10.15252/msb.202110571. Epub 2023 Oct 16.
6
Advances in mass spectrometry imaging for spatial cancer metabolomics.
Mass Spectrom Rev. 2024 Mar-Apr;43(2):235-268. doi: 10.1002/mas.21804. Epub 2022 Sep 6.
7
OffsampleAI: artificial intelligence approach to recognize off-sample mass spectrometry images.
BMC Bioinformatics. 2020 Apr 3;21(1):129. doi: 10.1186/s12859-020-3425-x.
8
Machine learning meets omics: applications and perspectives.
Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab460.
10
Harnessing omics data for drug discovery and development in ovarian aging.
Hum Reprod Update. 2025 May 1;31(3):240-268. doi: 10.1093/humupd/dmaf002.

引用本文的文献

1
Spatially Resolved Plant Metabolomics.
Metabolites. 2025 Aug 8;15(8):539. doi: 10.3390/metabo15080539.
4
Efficient Compression of Mass Spectrometry Images via Contrastive Learning-Based Encoding.
Anal Chem. 2025 Jul 29;97(29):15579-15585. doi: 10.1021/acs.analchem.4c06913. Epub 2025 Jul 21.
5
Unravelling lipid heterogeneity: Advances in single-cell lipidomics in cellular metabolism and disease.
BBA Adv. 2025 Jun 27;8:100169. doi: 10.1016/j.bbadva.2025.100169. eCollection 2025.
6
Mass Spectrometric Proteomics 3.0.
Int J Mol Sci. 2025 Jun 28;26(13):6242. doi: 10.3390/ijms26136242.
7
Orbitrap noise structure and method for noise unbiased multivariate analysis.
Nat Commun. 2025 Jul 10;16(1):6398. doi: 10.1038/s41467-025-61542-2.
10
SMQVP: A Web Application for Spatial Metabolomics Quality Visualization and Processing.
Metabolites. 2025 May 27;15(6):354. doi: 10.3390/metabo15060354.

本文引用的文献

1
Why the metabolism field risks missing out on the AI revolution.
Nat Metab. 2019 Oct;1(10):929-930. doi: 10.1038/s42255-019-0133-9.
2
OffsampleAI: artificial intelligence approach to recognize off-sample mass spectrometry images.
BMC Bioinformatics. 2020 Apr 3;21(1):129. doi: 10.1186/s12859-020-3425-x.
3
ColocML: machine learning quantifies co-localization between mass spectrometry images.
Bioinformatics. 2020 May 1;36(10):3215-3224. doi: 10.1093/bioinformatics/btaa085.
4
New Frontiers in Lipidomics Analyses using Structurally Selective Ion Mobility-Mass Spectrometry.
Trends Analyt Chem. 2019 Jul;116:316-323. doi: 10.1016/j.trac.2019.03.031. Epub 2019 Apr 6.
5
Accessible and reproducible mass spectrometry imaging data analysis in Galaxy.
Gigascience. 2019 Dec 1;8(12). doi: 10.1093/gigascience/giz143.
6
Ion Mobility Spectrometry and the Omics: Distinguishing Isomers, Molecular Classes and Contaminant Ions in Complex Samples.
Trends Analyt Chem. 2019 Jul;116:292-299. doi: 10.1016/j.trac.2019.04.022. Epub 2019 Apr 29.
7
Artificial intelligence for global health.
Science. 2019 Nov 22;366(6468):955-956. doi: 10.1126/science.aay5189.
8
Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry.
Mass Spectrom Rev. 2020 May;39(3):245-291. doi: 10.1002/mas.21602. Epub 2019 Oct 11.
9
Visualizing ToF-SIMS Hyperspectral Imaging Data Using Color-Tagged Toroidal Self-Organizing Maps.
Anal Chem. 2019 Nov 5;91(21):13855-13865. doi: 10.1021/acs.analchem.9b03322. Epub 2019 Oct 7.
10
Deciphering Metabolic Heterogeneity by Single-Cell Analysis.
Anal Chem. 2019 Nov 5;91(21):13314-13323. doi: 10.1021/acs.analchem.9b02410. Epub 2019 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验