Suppr超能文献

具有多种RGD呈现形式的水凝胶可增强细胞黏附与铺展。

Hydrogels with multiple RGD presentations increase cell adhesion and spreading.

作者信息

Moghaddam Abolfazl Salehi, Dunne Katelyn, Breyer Wendy, Wu Yingjie, Pashuck E Thomas

机构信息

Department of Bioengineering, USA.

Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.

出版信息

Acta Biomater. 2025 Jun 1;199:142-153. doi: 10.1016/j.actbio.2025.04.037. Epub 2025 Apr 18.

Abstract

A key challenge in designing hydrogels for cell culture is replicating the cell-matrix interactions found in tissues. Cells use integrins to bind their local matrix and form adhesions in which integrins dynamically move on the cell membrane while applying significant forces to the local matrix. Identifying the important biomaterial features for these interactions is challenging because it is difficult to independently adjust variables such as matrix stiffness, stress relaxation, the mobility of adhesion ligands, and the ability of these ligands to support cellular forces. In this work, we designed a hydrogel platform consisting of interpenetrating polymer networks of covalently crosslinked poly(ethylene glycol) (PEG) and self-assembled peptide amphiphiles (PA). We can tune the viscoelasticity of the hydrogel by modulating the composition of both networks. Ligand mobility can be adjusted independently of the matrix mechanical properties by attaching the arginine-glycine-aspartic acid (RGD) cell adhesion ligand to either the covalent PEG network, the dynamic PA network, or both networks at once. We find that endothelial cell adhesion formation and spreading is maximized in soft gels in which adhesion ligands are present on both the covalent and non-covalent networks. The dynamic nature of adhesion domains, coupled with their ability to exert substantial forces on the matrix, suggests that having different presentations of RGD ligands which are either mobile or capable of withstanding significant forces is needed to mimic different aspects of complex cell-matrix adhesions. These results will contribute to the design of hydrogels that better recapitulate physiological cell-matrix interactions. STATEMENT OF SIGNIFICANCE: Creating artificial environments that accurately mimic how cells interact with their surrounding matrix in natural tissues remains a fundamental challenge in biomaterials science. This study introduces a dual-network hydrogel platform that independently controls mechanical properties and adhesion ligand mobility by combining stable and dynamic polymer networks. A significant body of work has shown that matrix viscoelasticity and adhesion ligand mobility are important for cell adhesion and spreading. Our work builds on this by showing that endothelial cells function optimally when they can simultaneously engage with both mobile adhesion sites and force-resistant anchoring points, independent of matrix viscoelasticity. These insights will guide the design of more physiologically relevant hydrogels for tissue engineering applications and disease modeling.

摘要

设计用于细胞培养的水凝胶的一个关键挑战是复制组织中发现的细胞与基质的相互作用。细胞利用整合素来结合其局部基质并形成黏附,在这种黏附中,整合素在细胞膜上动态移动,同时对局部基质施加显著的力。确定这些相互作用的重要生物材料特征具有挑战性,因为难以独立调节诸如基质刚度、应力松弛、黏附配体的流动性以及这些配体支持细胞力的能力等变量。在这项工作中,我们设计了一种水凝胶平台,它由共价交联的聚乙二醇(PEG)和自组装肽两亲物(PA)的互穿聚合物网络组成。我们可以通过调节两个网络的组成来调整水凝胶的粘弹性。通过将精氨酸 - 甘氨酸 - 天冬氨酸(RGD)细胞黏附配体连接到共价PEG网络、动态PA网络或同时连接到两个网络,可以独立于基质机械性能来调节配体的流动性。我们发现,在内皮细胞黏附形成和铺展方面,共价和非共价网络上都存在黏附配体的软凝胶中达到最大值。黏附域的动态性质,加上它们对基质施加大量力的能力,表明需要具有不同呈现方式的RGD配体,这些配体要么是可移动的,要么能够承受显著的力,以模拟复杂细胞 - 基质黏附的不同方面。这些结果将有助于设计能更好地重现生理细胞 - 基质相互作用的水凝胶。

重要性声明

创建能够准确模拟细胞在天然组织中如何与其周围基质相互作用的人工环境仍然是生物材料科学中的一项基本挑战。本研究引入了一种双网络水凝胶平台,通过结合稳定和动态聚合物网络来独立控制机械性能和黏附配体的流动性。大量工作表明,基质粘弹性和黏附配体流动性对细胞黏附和铺展很重要。我们的工作在此基础上进一步表明,当内皮细胞能够同时与可移动的黏附位点和抗力锚定点结合时,其功能最佳,而与基质粘弹性无关。这些见解将指导设计用于组织工程应用和疾病建模的更具生理相关性的水凝胶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验