Tao Jinqiu, Wu Hao, Xie Junhao, Lu Zhou, Li Shenzhen, Jin Ming, Zhao Hongxia, Dong Lei, Chen Shuohui, Yang Yong, Ran Qianping
State Key Laboratory of Engineering Materials for Major Infrastructure, School of Material Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China.
Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China.
Small. 2025 Sep;21(35):e2505827. doi: 10.1002/smll.202505827. Epub 2025 Jul 11.
Ice accretion on infrastructure jeopardizes operational safety, spurring demand for robust photothermal anti/de-icing superhydrophobic surfaces. However, their fragility under external mechanical degradation limits practical applications. Inspired by sea urchins' hierarchical armor, a composite protective superhydrophobic coating (PDSF/UPNI) integrating resin-mediated interfacial interactions and microneedle-enhanced morphology is proposed. The design features urchin-inspired polyaniline particles embedded within a silicone-based resin matrix, with their microstructure anchored via hydrogen bonds and π-π stacking interactions to form multiscale microneedle-like protrusions. These PDSF/UPNI composite coatings, achieved via parameter optimization, demonstrate exceptional superhydrophobicity through surface-embedded polyaniline particles. Moreover, the coating imparts distinguished mechanical robustness, enabling it to retain water repellency even after 800 abrasion and 100 tape peeling cycles. In contrast to the intricate fabrication procedures and structurally vulnerable biomimetic configurations characteristic of conventional superhydrophobic coatings, PDSF/UPNI demonstrates exceptional mechanical robustness through hydrogen bonds and π-π stacking-reinforced interfacial mechanical interlock engineering, thereby circumventing the inherent durability limitations of traditional topographical designs. The enhanced durability significantly contributes to passive anti-icing and active photothermal de-icing applications by increasing the freezing delay time and reducing the melting time on prepared surfaces. By reconciling mechanical robustness with photothermal ice-phobic synergy, this work establishes a biomimetic blueprint for ultrahigh-durable multifunctional superhydrophobic coatings.
基础设施上的结冰现象会危及运行安全,这促使人们对坚固的光热防冰/除冰超疏水表面产生需求。然而,它们在外部机械降解作用下的脆弱性限制了实际应用。受海胆分层装甲的启发,提出了一种集成树脂介导的界面相互作用和微针增强形态的复合防护超疏水涂层(PDSF/UPNI)。该设计的特点是将受海胆启发的聚苯胺颗粒嵌入硅基树脂基体中,其微观结构通过氢键和π-π堆积相互作用固定,形成多尺度微针状突起。这些通过参数优化制备的PDSF/UPNI复合涂层,通过表面嵌入的聚苯胺颗粒展现出卓越的超疏水性。此外,该涂层具有出色的机械坚固性,即使经过800次磨损和100次胶带剥离循环后仍能保持疏水性。与传统超疏水涂层复杂的制造工艺和结构脆弱的仿生结构不同,PDSF/UPNI通过氢键和π-π堆积增强的界面机械互锁工程展现出卓越的机械坚固性,从而规避了传统形貌设计固有的耐久性限制。通过增加制备表面的冻结延迟时间并减少融化时间,增强的耐久性对被动防冰和主动光热除冰应用有显著贡献。通过协调机械坚固性与光热憎冰协同效应,这项工作为超耐用多功能超疏水涂层建立了一个仿生蓝图。