Suppr超能文献

具有防污和安全热调节功能的透气纳米棒嵌入分层光热涂层,用于高效防冰和除冰

Breathable Nanorod-Embedded Hierarchical Photothermal Coatings with Anti-Soiling and Safe Thermal Regulation for Efficient Anti-Icing and De-Icing.

作者信息

Sun Ren-Yi, Wang Fang, Tan Yi, Li Jin-Le, Jiang Zhi-Shuo, Deng Cong, Song Fei, Wang Yu-Zhong

机构信息

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Advanced Polymeric Materials, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

College of Polymer Science and Engineering, Sichuan University, Chengdu, 610064, P. R. China.

出版信息

Small. 2025 Sep;21(35):e2506234. doi: 10.1002/smll.202506234. Epub 2025 Jul 11.

Abstract

Photothermal hydrophobic surfaces offer a promising solution for mitigating ice hazards under low-temperature, high-humidity conditions via solar-driven de-icing. However, surface contamination can compromise photothermal efficiency, while fabric-applicable coatings must also provide flexibility, breathability, durability, and safe thermal regulation (≈50 °C). Current systems require further optimization to balance these demands for practical use. Here, a nanorod-embedded photothermal strategy is presented that integrates superhydrophobicity, anti-icing, and de-icing capabilities with environmental robustness in fabrics. The composite comprises a polypyrrole-loaded cellulose nanocrystal inner layer for photothermal conversion and a fluoroalkyl silane-modified silica top layer for superhydrophobicity. The synergy between hierarchical micro-nano roughness and photothermal activation enables an "external repellency, internal heating" mechanism, effectively overcoming the limitations of passive coatings. This dual-functional architecture achieves a solar absorption rate of 97.2% and reaches 53.1 °C under 100 mW cm⁻ irradiation, while remaining safe for human contact and maintaining breathability (moisture permeability: 6.86 × 10 g·m⁻·d⁻¹). It delays freezing by 417 s at -15 °C and reduces the melting time of an ice cube by 53.2% under 1-sun illumination. The fabric exhibits appreciable chemical stability, abrasion resistance, flexibility, and robustness under extreme conditions, ensuring long-term performance. This work offers a scalable solution for outdoor and personal protective equipment in cold environments.

摘要

光热疏水表面为在低温、高湿条件下通过太阳能驱动除冰减轻结冰危害提供了一种很有前景的解决方案。然而,表面污染会降低光热效率,而适用于织物的涂层还必须具备柔韧性、透气性、耐用性和安全的热调节性能(约50°C)。当前的系统需要进一步优化以平衡这些实际应用中的需求。在此,提出了一种嵌入纳米棒的光热策略,该策略将超疏水性、防冰和除冰能力与织物的环境稳健性相结合。该复合材料包括用于光热转换的聚吡咯负载纤维素纳米晶内层和用于超疏水性的氟代烷基硅烷改性二氧化硅顶层。分级微纳粗糙度与光热活化之间的协同作用实现了“外部排斥、内部加热”机制,有效克服了被动涂层的局限性。这种双功能结构实现了97.2%的太阳能吸收率,在100 mW cm⁻²辐照下温度达到53.1°C,同时对人体接触安全并保持透气性(透湿率:6.86×10⁻³ g·m⁻¹·d⁻¹)。在-15°C下它将结冰延迟417秒,在1个太阳光照下将冰块的融化时间缩短53.2%。该织物在极端条件下表现出可观的化学稳定性、耐磨性、柔韧性和稳健性,确保了长期性能。这项工作为寒冷环境中的户外和个人防护装备提供了一种可扩展的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验