Wang Chao, Zhong Li, Zhang Jixiang, Zhan Minghui, Ren Kaixiang, Wang Pan, Liu Bianhua, Wang Zhenyang, Zhao Jun
School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
ACS Appl Mater Interfaces. 2025 Aug 6;17(31):44872-44883. doi: 10.1021/acsami.5c03999. Epub 2025 Jul 24.
The integration of superhydrophobicity and photothermal conversion offers transformative potential for addressing ice accretion challenges in outdoor infrastructure. However, current technologies are constrained by fluorinated chemical dependencies, complex manufacturing workflows, and limited substrate adaptability. Herein, we present a fluorochemical-free, eco-friendly, scalable coating system through a one-step spray deposition of antimony selenide (SbSe), stearic acid (STA), and poly(methyl methacrylate) (PMMA). The synergistic incorporation of SbSe and STA creates a micro/nano structure with enhanced surface roughness ( = 189.937 nm) and low surface energy, achieving exceptional liquid repellency (water contact angle: 165°, sliding angle: 3°). The optimized SbSe/STA/PMMA (SbSe-SP) composite demonstrates remarkable substrate versatility, adhering robustly to diverse surfaces (metals, glass, paper, and wood) without requiring pretreatment. Notably, the SbSe-SP coating exhibits a 4.67-fold extension in delayed ice freezing time (280 s at -20 °C) compared to that of uncoated substrate (60 s at -20 °C). Furthermore, the intrinsic photothermal conversion capability of SbSe enables rapid surface heating, rising to 80.0 °C in 180 s under 1-sun illumination (0.14 W/cm), facilitating autonomous ice melting without external energy supply. Besides, the SbSe-SP coating exhibits outstanding mechanical durability and self-cleaning property. This scalable, eco-conscious fabrication approach bridges the gap between laboratory innovation and industrial deployment, offering a sustainable pathway for energy-efficient anti-icing solutions in aviation power systems and cold-region infrastructure.
超疏水性与光热转换的结合为解决户外基础设施中的结冰问题提供了变革性潜力。然而,目前的技术受到含氟化学物质依赖、复杂制造流程和有限的基材适应性的限制。在此,我们通过一步喷雾沉积硒化锑(SbSe)、硬脂酸(STA)和聚甲基丙烯酸甲酯(PMMA),提出了一种无氟化学物质、环保、可扩展的涂层系统。SbSe和STA的协同结合创造了一种具有增强表面粗糙度( = 189.937 nm)和低表面能的微/纳米结构,实现了优异的液体排斥性(水接触角:165°,滑动角:3°)。优化后的SbSe/STA/PMMA(SbSe-SP)复合材料表现出显著的基材通用性,无需预处理即可牢固地附着在各种表面(金属、玻璃、纸张和木材)上。值得注意的是,与未涂层的基材(-20°C下60秒)相比,SbSe-SP涂层的延迟结冰时间延长了4.67倍(-20°C下280秒)。此外,SbSe的固有光热转换能力能够实现快速表面加热,在1个太阳光照(0.14 W/cm)下180秒内升温至80.0°C,无需外部能量供应即可实现自动融冰。此外,SbSe-SP涂层还具有出色的机械耐久性和自清洁性能。这种可扩展、注重环保的制造方法弥合了实验室创新与工业应用之间的差距,为航空动力系统和寒冷地区基础设施中的节能防冰解决方案提供了一条可持续的途径。