Abah Colette, Lawson Jared P, Chitale Rohan, Simaan Nabil
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA.
Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235 USA.
IEEE Trans Med Robot Bionics. 2024 Nov;6(4):1726-1737. doi: 10.1109/TMRB.2024.3464123. Epub 2024 Sep 19.
The size limitations and tortuosity of the neurovasculature currently exceed the capabilities of existing robotic systems. Furthermore, safety considerations require a fail-safe design whereby some passive compliance is used for an added layer of safety and for sensing the lateral load on the steerable portion of the catheter. To address these needs, we propose a novel multi-articulated robotic catheter technology that aims to increase technical precision, reduce procedural time and radiation exposure, and enable the semi-automation of catheters during neuroendovascular procedures. This catheter uses joint-level sensing and fluoroscopic imaging to actively bend in two separate planes. Its design also uses series-elastic actuation for increased safety and active compliance (self-steering). We present the design, kinematic modeling, and calibration of this system. A multi-mode real-time control architecture of the system was implemented and experimentally validated. We demonstrate the use of the robotic catheter for branch selection, insertion in an unknown channel under active compliance, and autonomous deployment within a 2D vasculature model. Furthermore, we developed algorithms for intra-operative catheter tracking and pose filtering. Methods presented in this paper make significant strides towards the future goal of enabling semi-autonomous navigation for neuroendovascular procedures.
目前,神经血管系统的尺寸限制和曲折度超出了现有机器人系统的能力范围。此外,出于安全考虑,需要一种故障安全设计,即使用某种被动柔顺性来增加一层安全性,并用于感知导管可转向部分上的侧向负载。为满足这些需求,我们提出了一种新型多关节机器人导管技术,旨在提高技术精度、减少手术时间和辐射暴露,并在神经血管内手术期间实现导管的半自动化。这种导管利用关节级传感和荧光透视成像在两个独立平面上主动弯曲。其设计还采用了串联弹性驱动,以提高安全性和主动柔顺性(自动转向)。我们介绍了该系统的设计、运动学建模和校准。实现了该系统的多模式实时控制架构并进行了实验验证。我们展示了机器人导管在分支选择、在主动柔顺下插入未知通道以及在二维血管模型内自主部署方面的应用。此外,我们还开发了术中导管跟踪和姿态滤波算法。本文提出的方法朝着实现神经血管内手术半自主导航的未来目标迈出了重要一步。