Ji Hongxin, Li Jiaqi, Shi Zhennan, Tang Zijian, Liu Xinghua, Han Peilin
School of Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China.
College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai'an 271018, China.
Sensors (Basel). 2025 Jun 23;25(13):3904. doi: 10.3390/s25133904.
For large oil-immersed transformers, their metal-enclosed structure poses significant challenges for direct visual inspection of internal defects. To ensure the effective detection of internal insulation defects, this study employs a self-developed micro-robot for internal visual inspection. Given the substantial morphological and dimensional variations of target defects (e.g., carbon traces produced by surface discharge inside the transformer), the intelligent and efficient extraction of carbon trace features from complex backgrounds becomes critical for robotic inspection. To address these challenges, we propose the DCMC-UNet, a semantic segmentation model for carbon traces containing adaptive illumination enhancement and dynamic feature fusion. For blurred carbon trace images caused by unstable light reflection and illumination in transformer oil, an improved CLAHE algorithm is developed, incorporating learnable parameters to balance luminance and contrast while enhancing edge features of carbon traces. To handle the morphological diversity and edge complexity of carbon traces, a dynamic deformable encoder (DDE) was integrated into the encoder, leveraging deformable convolutional kernels to improve carbon trace feature extraction. An edge-aware decoder (EAD) was integrated into the decoder, which extracts edge details from predicted segmentation maps and fuses them with encoded features to enrich edge features. To mitigate the semantic gap between the encoder and the decoder, we replace the standard skip connection with a cross-level attention connection fusion layer (CLFC), enhancing the multi-scale fusion of morphological and edge features. Furthermore, a multi-scale atrous feature aggregation module (MAFA) is designed in the neck to enhance the integration of deep semantic and shallow visual features, improving multi-dimensional feature fusion. Experimental results demonstrate that DCMC-UNet outperforms U-Net, U-Net++, and other benchmarks in carbon trace segmentation. For the transformer carbon trace dataset, it achieves better segmentation than the baseline U-Net, with an improved mIoU of 14.04%, Dice of 10.87%, pixel accuracy (P) of 10.97%, and overall accuracy (Acc) of 5.77%. The proposed model provides reliable technical support for surface discharge intensity assessment and insulation condition evaluation in oil-immersed transformers.
对于大型油浸式变压器,其金属封闭结构给直接目视检查内部缺陷带来了重大挑战。为确保有效检测内部绝缘缺陷,本研究采用自行研制的微型机器人进行内部目视检查。鉴于目标缺陷(如变压器内部表面放电产生的碳痕)在形态和尺寸上存在很大差异,从复杂背景中智能高效地提取碳痕特征对于机器人检查至关重要。为应对这些挑战,我们提出了DCMC-UNet,这是一种用于碳痕的语义分割模型,包含自适应光照增强和动态特征融合。针对变压器油中光反射和光照不稳定导致的碳痕图像模糊问题,开发了一种改进的CLAHE算法,该算法纳入了可学习参数,在增强碳痕边缘特征的同时平衡亮度和对比度。为处理碳痕的形态多样性和边缘复杂性,在编码器中集成了动态可变形编码器(DDE),利用可变形卷积核改进碳痕特征提取。在解码器中集成了边缘感知解码器(EAD),它从预测的分割图中提取边缘细节并将其与编码特征融合,以丰富边缘特征。为减轻编码器和解码器之间的语义差距,我们用跨层注意力连接融合层(CLFC)取代标准的跳跃连接,增强形态和边缘特征的多尺度融合。此外,在颈部设计了一个多尺度空洞特征聚合模块(MAFA),以增强深度语义和浅层视觉特征的整合,改善多维度特征融合。实验结果表明,DCMC-UNet在碳痕分割方面优于U-Net、U-Net++和其他基准模型。对于变压器碳痕数据集,它比基线U-Net实现了更好的分割,平均交并比(mIoU)提高了14.04%,Dice系数提高了10.87%,像素准确率(P)提高了10.97%,总体准确率(Acc)提高了5.77%。所提出的模型为油浸式变压器的表面放电强度评估和绝缘状况评估提供了可靠的技术支持。