Wang Xiaohan, Tong Jiayi, Peng Sida, Chen Yong, Ning Yang
Department of Statistics and Data Science, Cornell University, Ithaca, New York, USA.
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Stat. 2024 Sep;13(3). doi: 10.1002/sta4.70006. Epub 2024 Sep 9.
We propose a communication-efficient algorithm to estimate the average treatment effect (ATE), when the data are distributed across multiple sites and the number of covariates is possibly much larger than the sample size in each site. Our main idea is to calibrate the estimates of the propensity score and outcome models using some proper surrogate loss functions to approximately attain the desired covariate balancing property. We show that under possible model misspecification, our distributed covariate balancing propensity score estimator (disthdCBPS) can approximate the global estimator, obtained by pooling together the data from multiple sites, at a fast rate. Thus, our estimator remains consistent and asymptotically normal. In addition, when both the propensity score and the outcome models are correctly specified, the proposed estimator attains the semi-parametric efficiency bound. We illustrate the empirical performance of the proposed method in both simulation and empirical studies.
我们提出了一种通信效率高的算法,用于估计平均治疗效果(ATE),此时数据分布在多个站点,且协变量的数量可能远大于每个站点的样本量。我们的主要思想是使用一些适当的替代损失函数来校准倾向得分和结果模型的估计值,以近似实现所需的协变量平衡特性。我们表明,在可能存在模型误设的情况下,我们的分布式协变量平衡倾向得分估计器(disthdCBPS)可以快速逼近通过汇集多个站点的数据得到的全局估计器。因此,我们的估计器保持一致且渐近正态。此外,当倾向得分和结果模型都被正确设定时,所提出的估计器达到半参数效率界。我们在模拟和实证研究中展示了所提出方法的实证性能。