Ramzan Ashiq, Sofi Mudasir Younis, Ishfaq-Ul-Islam Mohammad, Khan Mohd Shahid, Khan M Ajmal
Department of Physics, Jamia Millia Islamia New Delhi 110025 India.
Department of Physics, Islamic University of Science and Technology Awantipora Pulwama J&K India
RSC Adv. 2025 Jul 10;15(29):24002-24018. doi: 10.1039/d5ra03555d. eCollection 2025 Jul 4.
We present a comprehensive first-principles investigation of the structural, electronic, magnetic, thermoelectric, and optical properties of MgNiX (X = S, Se) spinels. Both compounds are confirmed to be mechanically and dynamically stable in the cubic 3̄ structure. Energy-volume calculations establish ferromagnetism as the ground state, and phonon dispersion curves obtained density functional perturbation theory (DFPT) exhibit no imaginary frequencies, confirming dynamic stability. Electronic structure calculations using both GGA and TB-mBJ functionals reveal half-metallic ferromagnetism having total magnetic moments of approximately 4 μ per formula unit predominantly arising from Ni ions. Thermoelectric properties, including Seebeck coefficient, electrical and thermal conductivities, and the dimensionless figure of merit () has been evaluated in the temperature range of 100-800 K as a function of chemical potential. The maximum values of ∼1.00 for MgNiS and ∼0.98 for MgNiSe are attained near room temperature, indicating its efficient thermoelectric performance. High See beck coefficients in the spin-down channel 180 μV K for MgNiS and 450 μV K for MgNiSe reflect their spin-polarized electronic structures. Additionally, low lattice thermal conductivities derived from phonon-based calculations further enhance their thermoelectric potential. Optical analyses reveal strong absorption, high photoconductivity, and significant dielectric response in the visible to ultraviolet range, making these materials suitable for optoelectronic applications. These results establish both MgNiS and MgNiSe as promising multifunctional candidates for the use in next-generation spintronic, thermoelectric, and optoelectronic devices.
我们对MgNiX(X = S,Se)尖晶石的结构、电子、磁性、热电和光学性质进行了全面的第一性原理研究。两种化合物均被证实以立方3̄结构存在时在力学和动力学上是稳定的。能量-体积计算确定铁磁性为基态,通过密度泛函微扰理论(DFPT)获得的声子色散曲线没有虚频,证实了动力学稳定性。使用GGA和TB-mBJ泛函进行的电子结构计算表明,半金属铁磁性主要源于Ni离子,每个化学式单位的总磁矩约为4 μ。在100 - 800 K的温度范围内,作为化学势的函数,评估了包括塞贝克系数、电导率和热导率以及无量纲品质因数()在内的热电性质。MgNiS和MgNiSe在室温附近分别达到约1.00和约0.98的最大值,表明其具有高效的热电性能。MgNiS在自旋向下通道中的高塞贝克系数为180 μV K,MgNiSe为450 μV K,反映了它们的自旋极化电子结构。此外,基于声子计算得出的低晶格热导率进一步提高了它们的热电潜力。光学分析表明,在可见光到紫外光范围内具有强吸收、高光电导率和显著的介电响应,使这些材料适用于光电子应用。这些结果表明,MgNiS和MgNiSe都是用于下一代自旋电子、热电和光电器件的有前途的多功能候选材料。