Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47401.
Cognitive Science Program, Indiana University, Bloomington, IN 47401.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2320177121. doi: 10.1073/pnas.2320177121. Epub 2024 Sep 13.
One of the longstanding aims of network neuroscience is to link a connectome's topological properties-i.e., features defined from connectivity alone-with an organism's neurobiology. One approach for doing so is to compare connectome properties with annotational maps. This type of analysis is popular at the meso-/macroscale, but is less common at the nano-scale, owing to a paucity of neuron-level connectome data. However, recent methodological advances have made possible the reconstruction of whole-brain connectomes at single-neuron resolution for a select set of organisms. These include the fruit fly, , and its developing larvae. In addition to fine-scale descriptions of connectivity, these datasets are accompanied by rich annotations. Here, we use a variant of the stochastic blockmodel to detect multilevel communities in the larval connectome. We find that communities partition neurons based on function and cell type and that most interact assortatively, reflecting the principle of functional segregation. However, a small number of communities interact nonassortatively, forming form a "rich-club" of interneurons that receive sensory/ascending inputs and deliver outputs along descending pathways. Next, we investigate the role of community structure in shaping communication patterns. We find that polysynaptic signaling follows specific trajectories across modular hierarchies, with interneurons playing a key role in mediating communication routes between modules and hierarchical scales. Our work suggests a relationship between system-level architecture and the biological function and classification of individual neurons. We envision our study as an important step toward bridging the gap between complex systems and neurobiological lines of investigation in brain sciences.
网络神经科学的长期目标之一是将连接组的拓扑性质(即仅基于连接定义的特征)与生物体的神经生物学联系起来。实现这一目标的一种方法是将连接组特性与注释图谱进行比较。这种类型的分析在中/宏观尺度上很流行,但在纳米尺度上则较少见,这是由于神经元水平的连接组数据匮乏所致。然而,最近的方法学进展使得在选定的一组生物体中,以单神经元分辨率重建整个大脑连接组成为可能。其中包括果蝇 , 和其发育中的幼虫。除了对连接进行精细描述外,这些数据集还附有丰富的注释。在这里,我们使用随机块模型的变体来检测幼虫 连接组中的多层次社区。我们发现,社区根据功能和细胞类型对神经元进行分区,并且大多数社区之间的相互作用是聚类的,反映了功能分离的原则。然而,有一小部分社区之间的相互作用是非聚类的,形成了一个由接收感觉/上行输入并沿下行途径输出的中间神经元组成的“丰富俱乐部”。接下来,我们研究了社区结构在塑造通信模式中的作用。我们发现,多突触信号沿着模块化层次结构的特定轨迹传递,中间神经元在介导模块之间和层次尺度上的通信路径方面起着关键作用。我们的工作表明了系统级架构与个体神经元的生物功能和分类之间存在关系。我们设想我们的研究是弥合复杂系统和脑科学神经生物学研究之间差距的重要一步。