Suppr超能文献

多维参考区域是优化患者个性化护理的一种新工具。

Multidimensional reference regions is a new tool to optimize the personalized care of patients.

作者信息

Gandia Peggy, Faget Angélo, Jamme Thibaut, Ausseil Jérôme, Concordet Didier

机构信息

Laboratoire de Pharmacocinétique et Toxicologie, Institut Fédératif de Biologie, CHU de Toulouse, Toulouse, France.

INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.

出版信息

Sci Rep. 2025 Jul 12;15(1):25189. doi: 10.1038/s41598-025-10173-0.

Abstract

Medical diagnostic processes often rely on comprehensive biological assessments, but current methods have drawbacks, such as insufficient consideration of variable dependence. Modern databases enable precise estimation of multidimensional variable distributions, prompting this study to enhance methodologies for biological variables. The focus is on establishing better reference regions and defining more accurate decision boundaries. Using an American database (1999-2017) with 19,231 healthy and 24,257 diseased individuals, the study examined plasma biochemical markers. The methodology involved constructing reference regions based on level sets of the healthy and diseased distributions and establishing decision boundaries. An example involved selecting diseased liver patients and considering 9 biological variables characterizing liver dysfunction. The proposed method is consistently more sensitive and specific than traditional approaches. Our results show that other biological functions, such as renal and cardiac functions, in a patient with liver dysfunction are also likely to be altered, even if the biochemical variables measuring these functions remain within the reference range. Therefore, it is preferable to consider a large panel of biological variables rather than just 9 to accurately characterize liver function. Despite potential limitations in identifying diseases, the proposed methodology provides valuable insights into physiological dysfunctions, enhancing early detection.

摘要

医学诊断过程通常依赖于全面的生物学评估,但目前的方法存在缺陷,比如对变量依赖性的考虑不足。现代数据库能够精确估计多维变量分布,促使本研究改进生物学变量的方法。重点在于建立更好的参考区域并定义更准确的决策边界。该研究使用了一个包含19231名健康个体和24257名患病个体的美国数据库(1999 - 2017年),对血浆生化标志物进行了检测。该方法包括基于健康和患病分布的水平集构建参考区域以及建立决策边界。一个例子是选择患病的肝病患者,并考虑9个表征肝功能障碍的生物学变量。所提出的方法始终比传统方法更敏感、更具特异性。我们的结果表明,即使测量这些功能的生化变量仍在参考范围内,肝功能障碍患者的其他生物学功能,如肾功能和心功能,也可能发生改变。因此,为了准确表征肝功能,最好考虑一大组生物学变量,而不仅仅是9个。尽管在疾病识别方面可能存在局限性,但所提出的方法为生理功能障碍提供了有价值的见解,有助于早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f27b/12254216/963435c5f698/41598_2025_10173_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验