Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, MA.
Department of Systems Biology, Harvard Medical School, Boston, MA.
Clin Chem. 2020 Feb 1;66(2):363-372. doi: 10.1093/clinchem/hvz020.
Many clinical decisions depend on estimating patient risk of clinical outcomes by interpreting test results relative to reference intervals, but standard application of reference intervals suffers from two major limitations that reduce the accuracy of clinical decisions: (1) each test result is assessed separately relative to a univariate reference interval, ignoring the rich pathophysiologic information in multivariate relationships, and (2) reference intervals are intended to reflect a population's biological characteristics and are not calibrated for outcome prediction.
We developed a combined reference region (CRR), derived CRRs for some pairs of complete blood count (CBC) indices (RBC, MCH, RDW, WBC, PLT), and assessed whether the CRR could enhance the univariate reference interval's prediction of a general clinical outcome, 5-year mortality risk (MR).
The CRR significantly improved MR estimation for 21/21 patient subsets defined by current univariate reference intervals. The CRR identified individuals with >2-fold increase in MR in many cases and uniformly improved the accuracy for all five pairs of tests considered. Overall, the 95% CRR identified individuals with a >7× increase in 5-year MR.
The CRR enhances the accuracy of the prediction of 5-year MR relative to current univariate reference intervals. The CRR generalizes to higher numbers of tests or biomarkers, as well as to clinical outcomes more specific than MR, and may provide a general way to use existing data to enhance the accuracy and precision of clinical decisions.
许多临床决策取决于通过解释相对于参考区间的测试结果来估计患者的临床结果风险,但参考区间的标准应用存在两个主要限制,降低了临床决策的准确性:(1)每个测试结果相对于单变量参考区间分别进行评估,忽略了多元关系中的丰富病理生理信息,以及(2)参考区间旨在反映人群的生物学特征,而不针对结果预测进行校准。
我们开发了一个组合参考区域(CRR),为一些完整的血细胞计数(CBC)指数(RBC、MCH、RDW、WBC、PLT)对衍生的 CRR,并评估了 CRR 是否可以增强单变量参考区间对一般临床结果(5 年死亡率风险(MR)的预测。
CRR 显著改善了 21/21 个当前单变量参考区间定义的患者亚组的 MR 估计。在许多情况下,CRR 确定了 MR 增加超过两倍的个体,并均匀地提高了考虑的所有五对测试的准确性。总体而言,95%的 CRR 确定了 5 年内 MR 增加超过 7 倍的个体。
CRR 提高了相对于当前单变量参考区间的 5 年 MR 预测的准确性。CRR 可以推广到更多的测试或生物标志物,以及比 MR 更具体的临床结果,并且可以提供一种利用现有数据提高临床决策准确性和精度的一般方法。